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INTRODUCTION 

A large number of boundary value problems encoun
tered in unsteady-state heat transfer, fluid flow through 
porous media, neutron diffusion and mass transfer in
volve the solution of a linear, parabolic partial differen
tial equation commonly referred to as the diffusivity 
equation, 

\l'U = ~ °o~· (1) 

where U is the dependent potential variable, K is the 
diffusivity (hydraulic, thermal, neutron, etc.) and t is 
the time variable. Solutions to Eq. 1 are available in the 
literature for a wide variety of initial and boundary con
ditions.'-4 The great majority of these solutions are ob
tained for geometric boundaries corresponding to linear, 
cylindrical or spherical flow models. 

A typical engineering application where the solution 
to Eq. 1 is required is the calculation of underground 
water encroachment across the boundaries of oil or 
natural gas reservoirs. In this particular area of applica
tion, the reservoir boundary is invariably approximated 
by circular geometry. However, the areal shape of many 
reservoirs can be better approximated by elliptic rather 
than circular boundaries. Thus the need for a general 
method of solving the diffusivity equation in elliptic co
ordinates arises in this problem as well as in other en
gineering applications involving elliptic boundaries. 

The wlution to the diffusivity equation usually in
volves the Error Function for the linear flow model, 
Bessel functions for the radial flow model and trigono
metric or Legendre functions for the spherical flow 
model. It is well known that the general solution to the 
diffusivity equation in elliptic coordinates involves 
Mathieu functions. The significance of Mathieu func
tions in the analytical treatment of the diffusivity equa
tion in elliptic coordinates is discussed in the litera
ture:-7 However, these references do not provide analy
tical solutions useful in practical engineering problems. 

The objectives of this paper are the development of 
the equations describing the unsteady-state liquid flow 
through a porous medium with an elliptic inner boun-
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dary, the development of a numerical method of solv
ing these equations and, finally, a comparison of the 
water encroachment quantities calculated from the el
liptic flow equation with those calculated from the ra
dial flow equation. While the specific problem treated in 
this paper relates to unsteady-state liquid flow through a 
porous medium, the basic equations and computational 
techniques developed will apply equally well to problems 
occurring in the other areas of engineering interest men
tioned previously. The solution given here is limited to 
a single case in which the outer boundary encloses an 
area 100 times that of the inner boundary. 

DESCRIPTION OF THE FLOW MODEL 

Fig. 1 shows the flow model upon which the calcu
lations presented in this paper are based. The inner 
and outer boundaries of the flow model are represented 
by two confocal ellipses with major and minor axes, re
spectively, equal to 2a" 2b" and 2ae and 2be • The height 
of the elliptic cylinder flow model is denoted by h. 

The following assumptions are employed in the de
velopment of the equations governing the unsteady-state 
liquid flow through the described flow model. 

1. Uniform porosity and permeability throughout the 
flow model 

u' C~--t' __ 

• -I 

FIG. I-GEOMETRIC RELATIONSHIPS BETWEEN CARTESIAN AND 
ELLIPTIC PLANAR COORDINATES. 
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2. Isothermal flow 
3. Two-dimensional flow in the horizontal plane, i.e., 

no flow in the vertical direction. 

THE DIFFUSIVITY EQUATION IN ELLIPTIC 
COORDINATES 

The diffusivity equation governing unsteady-state 
liquid flow through a porous medium has been derived 
in the literature' and is given here as Eq. 2. 

" Jkcpcop (2) 
\l-p = -k-Tt 

where p = liquid pressure, psia, 
C = sum of liquid and porous medium compres-

sibilities, VOl/vol - psia, 

~ = porous medium mobility, ft'/sec-psia, 
fJ. 
cP = porous medium porosity, fraction. 

The form of the term \l'P is determined by the geometry 
of the particular flow model being considered. For ex
ample if the flow model is a circular cylinder and if the 
flow is assumed radial, then Eq. 2 becomes 

2 _ o'p 1 op fJ.cpc op 
\l P - or' +7ar = -k-Tt (3) 

where r is the radius from the center of the cylindrical 
flow model. 

The form of the diffusivity equation governing un
steady-state liquid flow in a porous medium having el
liptic boundaries is obtained by expressing \l'p in ellip
tic coordinates. The general expression for the three-di
mensional Laplacian of a dependent variable p (u, v, 
w) in curvilinear coordinates u, v, and w is'" 

\l'p(u, v, w) =_1_[~( f3y ~)+~_ 
af3y ou a OU ov 

( 
ya oP) + ~(~~~)] (4) 
f3 ov ow y ow 

where 

a = ~C:y + (¥U)' + (¥U)' , 

f3 = ~(~r + (~r + (~r 
_ ~(OX)2 (OY)' (OZ)' andy - - + - + -

ow ow ow 

(5) 

(6) 

(7) 

The following relations between elliptic and cartesian 
coordinates can be used to determine a, f3 and y from 
Eqs. 5, 6 and 7 

x = f cosh ( u) cos ( v) . ( 8 ) 
Y = f sinh(u) sin(v) . (9) 
z = w (10) 

Substitution of a, f3 and y into Eqs. 4 and 2 then yields 

o'p o'p" " fJ.cpc op -, + -, = [cosh-(u) - cos-(v)]t -k- - (11) 
ou- ov- ot 

Eq. 11 is the diffusivity equation relating the dependent 
variable p to the elliptic planar coordinates u and v and 

h · . bl Th o'p d . t e time vana e t. e term --;--0 oes not appear III 
uW-

equation because of Assumption 3, previously stated. 
The geometric relationships between the cartesian 

planar coordinates x and y and the elliptic planar co
ordinates u and v are shown in Fig. 1. The confocal 
ellipses (along which u is constant) and the confocal 
hyperbolas (along which v is constant) are mutually or
thogonal or perpendicular to one another at points of 
intersection just as the lines x = constant and y = con-

VOL. 216, 1959 

stant are mutually orthogonal in the cartesian coordinate 
system. 

EQUATION DESCRIBING THE LIQUID FLOW 
ACROSS AN ELLIPTIC BOUNDARY 

Darcy's flow equation relates the superficial fluid ve
locity in a porous medium to the pressure gradient in 
the manner 

, k' ( ') 
V : - -;; \l P + 1~4 w . (12) 

where V is the velocity vector, ft/sec, p' is the liquid 
specific weight, lb force/cu ft and w is the vertical dis
tance coordinate, feet. The gradient of the dependent 
variable p(u, v, w) is expressed in the elliptic coordi
nates u, v and w as 

_ 1 op -: 1 op -.' lop' (13) 
\lp -- - 1 + - - 7 -I- - - k 

a ou f3 ov y ow 
Substitution of the previously determined expressions 
for a, f3 and y yields 

1 (oP:' op -: ) op-' 
\lp=--;===== -1+-7 +- k .1 ou ov ow t" cosh'u - cos'v 

(14) 

Substituting \lp from Eq. 14 into Eq. 12, one obtains 

V= k 1 (op -: op -: ) -1+- 7 

Jk [ f~ cosh'u _ cos'v ou ov 

+~k+Lk] 
ow 144 

(15) 

At any given point on an ellipse, u = constant, the 
op: . . 

term -- 7 IS proportIOnal to the velocity vector com
OV 

ponent in the v direction, or in the direction tangent to 

the ellipse at that pOint. The term ~: -; can therefore be 

deleted from Eq. 15 in this case, since the flow across 
elliptic boundary u = constant is being considered. Also, 

op' , , 
the term ow k + 1~4 kin Eq. 15 can be set equal to 

zero since ~: = - 1:4 from Assumption 3. Mak

ing these simplifications in Eq. 15, one obtains 

V(V't)=~[ 1 ~]. (16) 
fJ. .1" "ou f" cosh-u - cos-v u~K 

where K = a constant and 
V = V(v,t) = fluid velocity in negative u direction 

across the elliptic boundary u = K, ft/sec. 

The volumetric rate of liquid flow across an infinitesi
mal area element, dA, at the elliptic boundary is simply 
VdA, or 

dq =~[ dA OP] . (17) 
fJ. I h" "ou t' cos -u - cos-v ,,~K 

where dA = hds, sq ft, 
s = arc length on ellipse u = K, ft, 
q = q(t) = volumetric liquid flow rate 

across entire elliptic boundary, 
u = K, cu ft/sec 
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The differential arc length ds is given on the ellipse by 

ds = f3dv = Iv cosh'u - cos'v dv ( 18) 

and substitution of hi vcosh'u - cos'v for dA in Eq. 
17 yields 

dq = !5.~(_~) dv (19) 
f1. ou u~K 

Because of flow symmetry about the x and y axes (see 
Fig. 1), q can be obtained by integrating dq over the 
first quandrant from v = 0 to v = nl2 and multiplying 
the result by four. 

q(t) = 4kh I v ~ ,,/2 (~) dv (20) 
f1. v = 0 ou ,,~]( 

A dimensionless water influx term, QIDE' can now be 
defined as 

QtDE = f:D

;; q(tm:)dtJ)}: (21) 

h kt d' . I . f II" fl were tm; = --f= ImenSlOn ess trme or e Iptrc ow 
f1.</>c-

and q(tD}J) = IV = 7T/2 (op) . dv. The actual cubic 
v = 0 ou u.oA 

feet of cumulative water flow across the elliptic boun
dary up to time t is related to Q I DE as 

QtE = 4h</>cfb.pQ'DE . (22) 

NUMERICAL SOLUTION OF THE DEVELOPED 
EQUATIONS 

Definition of the new variables, 
kt 

tm: = f1.</>cf"" 

and 

p = Po - p, 

simplifies the diffusivity Eq. 11 to Eq. 23. 

o'P 02p [ 2 ] op 
-2 + -;:;:; = cosh'(u) - cos (v) -ou uV otm: 

(23) 

This equation has been solved numerically for initial 
and boundary conditions specifying an initial uniform 
pressure drop of zero throughout the flow model, a pres
sure drop of one for all time at the gas bubble boundary 
u = u., no flow across the aquifer exterior boundary u = 
u., and no flow (because of symmetry) across the por
tion of the x axis (a i (; x (; a.) represented by v = 0 
and across the portion of the y axis (b, (; y (; b u) rep
resented by v = n 12 (Fig. 1). 

The alternating-direction implicit difference method, 
proposed by Peaceman and Rachford,' has been em
ployed in solving Eq. 23 for the above initial and boun
dary conditions. In applying this method one obtains at 
each time step a system of simultaneous difference equa
tions. A technique given by Richtmyer' has been em
ployed to solve this system of equations on an IBM 704 
digital computer. 

The term QtDE has been calculated as a function of 
tDE for a selected elliptic cylinder flow model. The in
ner boundary of this model was specified as the el
lipse u = u. = 0.4. This u value corresponds to an 
eccentricity of 0.925 or a ratio of 2.63 between major 
and minor axes. The exterior closed boundary was taken 
as the confocal ellipse on which u = U e = 2.6. The cal-
culated Q'DE values are listed in Table 1 and are plotted 
in Fig. 2 as a function of dimensionless time tDE • The 
calculations were programed in the FORTRAN com-

462 

piler code and were carried out by an IBM 704 digital 
computer. * 

The area ratio of the elliptic flow model considered 
here is 101.3, where the area ratio is defined as the area 
included within the exterior boundary divided by the 
area of an ellipse is nab where the semi-major axis (a) 
is f(coshu) and the semi-minor axis (b) is f(sinhu), 
the 101.3 value is obtained as 

na,.b,. cosh(2.6) sinh(2.6) 
101.3 . 

na,b, cosh(.4)sinh(A) 

COMPARISON BETWEEN ELLIPTIC AND 
RADIAL FLOW 

Van Everdingen and Hurst' have treated the case of 
unsteady-state liquid flow in a porous circular cylinder 
model. They solved the diffusivity equation governing 
radial flow and presented tables of a dimensionless pro-

duction quantity, QID" Fig. 2 shows ?iID plotted vs to 

h kt d' . I . f d' I were tv = ---" = ImenSIOn ess tIme or ra Ia 
fJJ</>cr; 

flow, for the case of a flow model having an exterior 
radius 10 times the interior radius. The initial and boun
dary conditions employed in calculating these particular 
QID values are identical to the conditions used here in 
solving the elliptic flow diffusivity equation. 

The basis of comparison between elliptic and radial 
flow cannot be equal distances between the interior and 
exterior boundaries of the elliptic and radial flow models 
because the former model has no single dimension 
analogous to the radius of the latter. Comparison has 
therefore been made on a basis of equal areas encom
passed by the exterior ellipse and the exterior circle and 

:;'This program ean be obtained as a printed listing of instruc
tions by writing to the authors. 

5":) 
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RADIAL FLOW, FROM VAN, EVERD1NGEN Ii HURST
I 
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FIG. 2-ooQID ANI) QtDE VS DIMENSIONLESS TIME. 
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equal areas included within the interior ellipse and 
the interior circle. Thus, for equal thicknesses, each 
flow model contains the same volume (or mass) of 
water. The equality between the areas included within 
the interior boundaries yields the relationship 

7rr.' = 7ra;b, = 7r(fCOShUb) (fsinhu.) = .445/' . (24) 
where the area of the interior ellipse is 7ra,b, or 0.445/, 
since u. = .4 for the case considered here. Eq. 24 is 
employed in relating tv to tDE as 

kt kt 
tv = ---2 = 2.245 --, = 2.245tDE (25) 

!-Leper • !-Leper-

Corresponding Q'D and QtDE values should therefore be 
taken at tD = 2.245tDE rather than at tD = tDE • 

Equality of the areas enclosed by the exterior boun
daries is assured by equal area ratios for the elliptic 
and radial flow models, provided equal areas are in
cluded within the corresponding interior boundaries. 
The area ratio of the elliptic flow model considered 
here is 101.3, as mentioned above. However, radial flow 
Q tD quantities are not tabulated in the literature for this 
ratio, and available QtD values corresponding to a ratio 
of 100 (exterior radius equal to 10 times interior ra
dius) have therefore been used here. 

The actual cubic feet of cumulative water influx into 
the circular sink, Qt, is related to Q'D as 

Q, = 27rhepcr.'6.pQtD • (26) 

Thus, a comparison between the actual water influx into 
the elliptic sink and that calculated by approximating 
the ellipse as an equal area circle and employing the 
radial flow equation is afforded by the ratio 

Q, = 27rheper.'6.pQtv = 0.699 Q'D . 

Q'E 4hepej'6.pQ'DE Q'DE 
(27) 

where QtE is given as 4hepej'6.pQtDE by Eq. 22. The 
equality, Qt/QtE = 1, would denote exact duplication 
of the elliptic flow results by the radial flow results for 
an equal area circle. 

The ratio, Q,/QtE' has been calculated as a function 
of dimensionless time, tDE, and is tabulated in Table 1 
and plotted in Fig. 3. Errors in the computed QtDE val
ues and in the Q'D quantities contribute to the tabulated 
and plotted error in Q,/QtE' Fig. 3 shows that applica
tion of radial flow calculations to the elliptic flow case 
results in an error of the order of 7 per cent in Q t for 
small dimensionless time. The error decreases as dimen
sionless time increases and approaches zero (i.e., Qt/ 
QtE approaches 1.0) for large time. This approach of 
Q,/QtE to one for large time is a good check on the ac
curacy of the calculated QtDE values, since for large 
time the pressure drop approaches a steady-state uni
form value of one, and the total expansion of the equal 
volumes of water in both flow models (i.e., the cumu
lative influxes Qt and QtE) should be identical. 

---------

TABLE 1-0tDE AND QIDE AS FUNCTIONS OF DIMENSIONLESS TIME, t
DE

; 

_~ = 0.699 ~tl> tv ,~ 2.245 
'DH 1 Er 1 = max. percentage error in Q t DB' Er:! = max. 

OlE Qf nl,; 

t OIDH E" 
~~ Per cent 

0 0 0 
.1 .4758 4.4 
.5 1.2920 1.9 

1 1.9892 .98 
2 3.1614 
3 4.1801 .50 
4 5.1163 .59 
6 6.838R .42 
8 8.4279 

10 9.9166 .35 
15 13.2753 
20 16.1852 .30 
25 18.7080 
30 20.8955 
35 22.7921 
40 24.4366 .29 
45 25.8625 
50 27.0988 .29 
55 28.1707 
60 29.1001 
65 29.9059 
70 30.6046 
75 31.2104 
80 31.7357 .30 
85 32.191\ 
90 32.5860 
95 32.9284 

100 33.2252 
1\0 33.7057 
120 34.0669 
130 34.3384 
140 34.5424 .32 
150 34.6958 
160 34.81\0 
170 34.8976 .32 
180 34.9627 
200 35.0482 
220 35.0964 
230 35.11\9 
260 35.1386 
280 35.1470 
300 35.1516 
320 35.1540 
340 35.15.52 .32 
360 35.1557 
380 35.1559 
400 35.1559 .32 
426 35.1559 .32 

*AII Qtn values (except 50.15) correspond to area ratio of 100 

**This Qtn value corresponds to the correct area ratio of 101.3 
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tn Oln* ........... 

2.245 2.636 

6.75 5.598 

13.5 9.213 

22.45 13.42 

45 22.09 

1121.1 37.31 

180 44.21 

247 47.12 

314.3 48.45 

382 49.03 

450 49.30 

516 49.5 

900 50.15--

percentage error in Ot/Ot" 

Er2, 
Per cent 

Max. Max. 

Ot/Otp, Pas. Neg. 
Error Error 

.928 .172 0.98 

.936 .172 .50 

.944 .172 .42 

.948 .102 .35 

.955 .288 .30 

.965 .377 .29 

.975 .488 .30 

.980 .713 .31 

.982 .886 .32 

.984 1.130 .32 

.985 1.321 .32 

.986 1.468 .32 

.999 .172 .32 
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FIG. 3-COiHPARISON BETWEE:"i ELLIPTIC A:,(D RADIAL FLOW. 

DISCUSSION OF RESULTS 

From Fig. 3, the conclusion can be drawn that the 
error incurred by applying radial flow calculations to 
elliptically shaped reservoirs is inversely proportional 
to the magnitude of the tn values employed in the cal
culations. For example, suppose an elliptically shaped 
reservoir (with a finite, impervious exterior boundary) 
is approximated by an equal area circle and Eq. 26 is 
employed to calculate the water influx, Qt, for some 
pressure drop, .6.p, at the reservoir boundary. Then the 
error in Qt will be larger if the range of tD values, for 
the time period of interest, is 0 to 20 than if the range 
is 0 to 1000. This fact is evidenced by the curve plotted 
in Fig. 3, since the error in the calculated Q, value is 
larger for small tD than for large tD• The fact that the 
error in Qt ranges (approximately) from 7 to 2 per cent 
for intermediate tn from 2.245 (tDE = 1) to 224.5 (tnE 
= 100) indicates that a need exists for analytical so
lution of the elliptic flow diffusivity equation for larger 
(more practical) aquifer-reservoir volume ratios. Tables 
of dimensionless production or pressure drop quantities, 
analogous to the tables presented by Van Everdingen 
and Hurst,' could be developed from the analytical so
lution for inner elliptic boundaries of various eccen
tricities. Comparison of the tabulated elliptic and radial 
flow quantities (in a manner similar to that illustrated 
herein), would allow definite conclusions concerning the 
effect of reservoir areal shape on the field performance. 

NOMENCLATURE 

a = semi-major axis of ellipse, t cosh(u), feet 
b = semi-minor axis of ellipse, t sinh (u), feet 
c = sum of aquifer formation and fluid compres

sibilities, l/psia 
t = foci of ellipse are at x = ± t, y = 0, t in feet 
h = thickness or height of flow model, feet 

k/ p. = mobility of aquifer formation, ft'/sec-psi 
p = pressure, psia 

p = pressure drop, p" - p, psi 
p" = initial pressure, psia 
q = volumetric liquid flow rate across elliptic boun

dary, ft3/sec 

QtD = dimensionless influx quantity for raolal flow, 
tabulated by Van Everdingen and Hurst' 

QtDE = dimensionless influx quantity for elliptic flow 
Q, = cumulative liquid influx into inner circle of ra

dial flow model at time, t, ft3 
QtE = cumulative liquid influx into inner ellipse of 

elliptic flow model at time, t, ft' 
r = radius, feet 

rb = inner radius of circular flow model, feet 
r, = exterior radius of circular flow model, feet 

R = (~: r 
s = arc length on ellipse, feet 
t = time, seconds 

tD = dimensionless time for radial flow, = 

tDE = dimensionless time for elliptic flow, = 
u, v, w = elliptic cylinder coordinates 

kt 

p.</>crb' 

kt 

p.</>cj' 

u, = value of u on inner elliptic boundary of flow 
model 

u, = value of u on exterior elliptic boundary of flow 
model 

V = velocity vector, ft/sec 
</> = porosity, fraction 
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