Modern engineering applications require the solution of linear systems of millions or even billions of equations. The solution of the linear system takes most of the simulation for large scale simulations, and represent the bottleneck in developing scientific and technical software. Usually, preconditioned iterative solvers are preferred because of their low memory requirements and they can have a high level of parallelism. Approximate inverses have been proven to be robust and effective preconditioners in several contexts. In this communication, we present an adaptive Factorized Sparse Approximate Inverse (FSAI) preconditioner with a very high level of parallelism in both set-up and application. Its inherent parallelism makes FSAI an ideal candidate for a GPU-accelerated implementation, even if taking advantage of this hardware is not a trivial task, especially in the set-up stage. An extensive numerical experimentation has been performed on industrial underground applications. It is shown that the proposed approach outperforms more traditional preconditioners in challenging underground simulation, greatly reducing time-to-solution.

You can access this article if you purchase or spend a download.