A simplified discrete fracture model suitable for use with general purpose reservoir simulators is presented. The model handles both two and three-dimensional systems and includes fracture-fracture, matrix-fracture and matrix-matrix connections. The formulation applies an unstructured control volume finite difference technique with a two-point flux approximation. The implementation is generally compatible with any simulator that represents grid connections via a connectivity list. A specialized treatment based on a "star-delta" transformation is introduced to eliminate control volumes at fracture intersections. These control volumes would otherwise act to reduce numerical stability and time step size. The performance of the method is demonstrated for several example cases including a simple two-dimensional system, a more complex three-dimensional fracture network, and a model of a strike-slip fault zone. The discrete fracture model is shown to provide results in close agreement with those of a reference finite difference simulator in cases where direct comparisons are possible.

You can access this article if you purchase or spend a download.