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ABSTRACT

An ideal theoretical model of a naturally fractured
reservoir with a uniform fracture distribution,
motivated by an earlier model by Warren and Root,
has been developed. This model consists of a
finite circular reservoir with a centrally located
well and two distinct porous regions, referred to as
matrix and fracture, respectively. The matrix has
bigh storage, but low flow capacity; the fracture
bas low siorage, but high flow capacity. The flow
in the entire reservoir is unsteady state.

The results of this study are compared with the
results of the earlier models, and it has been
concluded that major conclusions of Warren and
Root are quite substantial. Furthermore, an attempt
has been made to study critically other analytical
methods reported in the literature.

In general, it may be concluded that the analysis
of a naturally fractured reservoir from pressure
transient data relies considerably on the degree
and the type of heterogeneity of the system; the
testing procedure and test facilities are sometimes
as  important. Nevertheless, under [favorable
conditions, one should be able to calculate in-situ
characteristics of the matrix-fracture system, such
as pore-volume ratio, over-all capacity of the
formation, total storage capacity of the porous
matrix, and some measure of matrix permeability.

INTRODUCTION

The analysis of flow and buildup tests for
obtaining in-situ characteristics of oil and gas
reservoirs has received considerable attention in
the past decade.

Most of the available techniques result in reliable
conclusions in macroscopically homogeneous reser-
voirs or in the homogeneous reservoirs with only
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certain types of induced and/or inherent heterogeneity
(such as wellbore damage, etc.). In general, the
greater the degree of heterogeneity, the less the
reliability of the information deduced from the
pressure transient data. A commonly encountered
heterogeneous system is a naturally fracturedreser-
voir where two types of distinct porosities occur in
the same formation. The region containing finer pores
may have high storage and low flow capacities. This
is called the matrix. The remaining region may have
high flow capacity with low storage. The latter
region is generally the set:of interconnecting
fractures and fissures of the rock, and for this
reason it is called the fracture. Ordinarily, we wish
to obtain the permeability and porosity of each
region and perhaps the frequency of the fracture
distribution in a reservoir. Such information is
necessary for reservoir engineering. Other
information, such as wellbore damage, will be
useful in evaluating possible remedial work for
such fields. Few authors have suggested theories
to aid in calculating the in-situ characteristics of
a naturally fractured reservoir similar to what we
have described above. Pollard! suggested that a
naturally fractured reservoir contained three distinct
regions: a damaged or an 1mproved region
surrounding the wellbore, and the two remaining
regions the same as described earlier. He suggested
that the flow was taking place from the tight marrix
into the highly conductive fractures, then into the
wellbore region and finally into the well column.
He concluded that the average pressure buildup in
each of these distinct regions can be expressed
approximately in terms of an exponential decay
function of time. He also hypothesized that the
decay coefficients for each of these functions were
significantly different from each other; consequently,
each of these functions became dominant in turn, in
the process of pressure buildup. Thus, by a proper
graphic plot of the logarithm of wellbore pressure
differences vs buildup time, each of these functions
could be determined (see Fig. 1). Pollard suggested
methods of determining the wellbore damage and
fracture volume. Later Pirson and Pirson2 extended

1References given at end of paper.
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Pollard’s method to calculate matrix volume as well. «

The graphic method of Pollard and formulas of
Pirson-Pirson for interpretation of the wellbore
pressure data have had apparent success; however,
it was shown by Warren and Root3 that such results
obtained from a synthesized homogeneous infinite
formation were considerably in error. We will 3lso
show, by our model, that such errors prevail for a
finite fractured reservoir.

Warren and Root used a different approach to
study naturally fractured reservoirs. They assumed
that a reservoir can be represented by a set of
building blocks (parallelepipeds) where the blocks
represented the matrix and the spacing between the
fractures. They also assumed that formation fluid
flows into the fractures and the high conductivity
fractures carry the fluid to the wellbore column. In
this process, it was assumed that the flow in the
fracture was unsteady state, while in the matrix it
was quasi-steady state. They concluded that the
pressure buildup curve (as plotted in the
conventional manner) would have two parallel
straight-line sections whose slopes were related to
the flow capacity of the formation; the vertical
separation of the two lines was related to the
relative storage capacity of the fracture (see Fig.
2). There are a number of points in favor of Warren
and Root’s model. For instance, they have evidenced
field cases where the buildup plot resembles the
theoretical plot convincingly.*

Odeh® represented a model quite similar to that
of Warren and Root and concluded that a fractured
reservoir buildup curve behaves like the buildup
curve of a homogeneous reservoir. This, of course,
contradicted the results of Warren and Root.
However, it can be shown that, if the building
block dimensions are small (e.g., 3 ft) and the
matrix permeability high (e.g., greater than 0.01
md), his conclusions are valid for all practical
purposes. In support of Warren and Root’s model, it
is interesting to know that, for instance, in the
fractured reservoirs of Southwestern Iran, the matrix
permeability is in the range of 0.00005 to 0.5 md
and the fracture blocks are huge. 14

A recent paper by Pickett and Reynolds® reports
on the experiments they have conducted on a highly
fractured formation in a pre-Cambrian gneiss with
no matrix porosity. They concluded that the Pollard
graphic method fits the data extremely well. They
did not report on any calculations based on the
graphic parameters suggested by Pollard or Pirson.

INITIAL DATA

SKIN

RESISTANCE

(d-pwi~C-D)
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FIRST DIFFERENCE CURVE

LOG (p — by, )

FIG. 1 — POLLARD PLOT OF PRESSURE BUILDUP
DATA. (AFTER PIRSON AND PIRSON?Z)
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We feel that the curve obtained by Pickett and
Reynolds could be an indication of what is known
as ‘‘late transient’’ portion of pressure fall-off
curve (see Matthews and Russell?), for which the
graphic representation is identical,

In the preceding papers oil was the dominant
flowing phase. A case of gas flow in a vugular,
dolomitic fractured reservoir was presented by
Adams et al., 10 where the gas was fairly dry. They
noticed that some of the preceding models could
explain the pressure buildup curves of numerous
wells in this field. Actually, they observed two
slopes where the first one had a higher value than
the second slope. The conclusion was that the first
slope would yield matrix permeability and the
second one would yield the mean permeability of
the fracture-matrix system. We feel that in the
absence of other possibilities such an explanation
is plausible, and a paper by Huskey and Crawford !!
which studies the effect of nonconnecting vertical
fractures on over-all flow behavior, could shed
additional light on the subject.

Other papers have been written on multiphase
flow in vugular fractured reservoirs; however, in
these papers only the long-term reservoir engineering
aspects of flow have been emphasized and none
could have been applied to pressure buildup tests.

Let us, for a moment, go back to a curve obtained
by Warren and Root. As it is shown in Appendix B,
the minimum time required for a typical building
block of their model to reach quasi-steady state is
about the same as the time where the first straight
line should disappear. At first sight this implies
that in a realistic situation, the first straight line
may not develop as such. If so, a vital piece of
information, the relative storage capacity of the
fracture, may no longer be calculable. Therefore,
to ensure the validity of this apparent weakness of
Warren and Root’s model and perhaps other hidden
inconsistencies, we chose a simplified version of
their model reservoir and removed the restriction of
quasi-steady state from the matrix, replacing it by
unsteady state. We concluded that the pressure
buildup curve, based on this model, resembled
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FIG. 2 — FIELD BUILDUP CURVE. (AFTER WARREN
AND ROOT%
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Warren and Root’s and, furthermore, that some of
their quantitative findings were accurate. Other
conclusions inferred from the shape of the buildup
curves will appear later in the report.

THEORY

A special case of the idealized fractured reservoir
of Warren and Root3 is adopted for this work. This
special case can be thought of in two different
ways. First, it is one in which all the fractures are
horizontal (see Fig. 3 and compare Idealization III
with both II and I). Secondly, it is one in which all
the fractures are replaced by an equivalent set of
horizontal fractures. We chose horizontal fractures
so that the equivalent flow in the fractures becomes
radial and converging toward the wellbore. In either
case, our idealized reservoir consists of a set of
uniformly spaced horizontal matrix layers with the
set of fractures as the spacers. If a well penetrates
the formation, then the formation fluid enters the
wellbore largely through the high flow capacity
fractures. Since the matrix flow capacity relative to
that of the fracture is extremely low, it can be
assumed that flow enters the wellbore only at the
penetrated fractures. Indeed, the soundness of this
assumption was substantiated by allowing the
whole sand face to flow (see Fig. O).

A representative section of the model reservoir
is shown by Fig. 4. The general assumptions
governing this model follow.

1. There is single-phase flow.

2. The matrix with high storage and extremely
low flow capacity produces into the fracture, which

Actual Reservoir

Mode! Reservoir

Fracture

Fracture
Matrix

W

A Finite Reservoir with Centrally Located Well

FIG. 3 — IDEALIZATION OF A NATURALLY FRAC-
TURED HETEROGENEOUS POROUS MEDIUM.
(II, WARREN-ROOT MODEL, 3 111, KAZEMI MODEL)

Centraily Located Well
z /
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1 //
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3 8, J&— Fracture Axis
\ /
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FIG. 4—REPRESENTATIVE SECTION OF THE MODEL
RESERVOIR.
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has low storage and high flow capacity. The
fracture, in turn, produces into the wellbore.

3. Flow occurs in both radial and vertical
directions.

4. Flow is unsteady state.

5. The reservoir is horizontal and the matrix and
the fracture are each homogeneous and isotropic.

6. The well is centrally located in a finite
circular reservoir.

The flow is described as follows.
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Egqs. 1 and 2 are valid provided the fluid
compressibility (about 1075 psi~1) and the spatial
gradients of @ are small. This particular
representation of flow equation in terms of @ is
physically more meaningful, because for a slightly
compressible fluid the instantaneous value of the
potential @ in the wellbore is constant, while the
pressure varies from the top to the bottom of the
sand. Nonetheless, for simplicity we replaced
potential by the pressure p since the major
conclusions will ‘not alter for most of the practical
cases.

The solution of Systems 1 through 6 was obtained
by an iterative alternating direction implicit (ADI)
procedure simjlar to the method of Ref. & (see
Appendix C).

RESULTS

Three hypothetical cases, with properties
appearing in Table 1, were synthesized. A typical
pressure drawdown and a buildup are reported in
Figs. 6 and 7. It can be observed from the large
time portion of Fig. 6 that the boundary effect has
not been sensed at the wellbore, while in Fig. 7
this effect is almost noticeable. Figs., 8 and 9 are
the pressure buildup and drawdown of Case 2 where
the boundary effect is noticeable. Fig. 10 is the
pressure drawdown for Case 3, where again the

TABLLE 1 — THE SYNTHESIZED SYSTEMS

Parameters Case 1 Case 2 Case 3

P .05 .05 .08

b .45 1.00 .45

h/2 9.05 9.05 4.90

&/2 .025 .025 .025

k. .01 .01 1.0

kg 7236.39 18098.00 5521,0

S 10°5 6.0 x 1076 10°5

¢ 105 6.0 x 107° 10-5

p; 4000.0 3000.0 5000.0

q 90.5 90.5 200.0

© 1.0 1.0 0.235

B 1.0 1.0 1.0

ro 5280.0 2640.0 5280.0

r 0.375 0.375 0.375
Calculated according to Appendix D:

ey 105 6.0 x 10°6 10-5

e 10-5 6.0 % 1076 10°5

b, 0.049862 0.049862 0.079592

b, 0.0012431 0.0027624 0.0022959

) 0.024324 0.052493 0.028037

A 2.576 x 10~6 1.03x 1070 6.025x 1074

k 20.0 50.0 29.163

b 0.051105 0.052624 0.081888
454

boundary effect has begun. Fig. 11 is the replot of
the quasi-steady state portion of the drawdown
curve of Case 2 (see Fig. 8). The Pollard plots for
Cases 1 and 2 are shown in Figs. 12 and 13,
respectively. Notice that the data for preparation of
these figures (Table 2) are taken from Figs. 7 and
9, respectively; they are located between the two
straight-line  segments and these
correspond to early buildup data.

segments

ANALYSIS OF THE RESULTS

Figs. 6 through 10 indicate that both the pressure
drawdown and the pressure buildup curves based on
our model have two distinct slopes. This was the
same conclusion reported by Warren and Root.3
Nevertheless, a careful examination of the cases
reported indicates that the results are not identical.
It also appears that the previous theories can be
critically reviewed. Incidentally, we have chosen
to use the interpretative formulas of Warren and
Root as a basis for our quantitative interpretations.
The reliability of such equations is discussed in
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the following paragraphs. The major equations are
in Appendix B.

1. Fig. 6 indicates that if the boundary effect
has not been sensed at the wellbore, if the matrix
flow capacity is much smaller than the fracture
flow capacity (such that A < 5 x 10-%) and if the
two parallel line segments of the drawdown curve
have sufficient vertical separations, the slope m
and the separation Dp yield accurate total flow
capacity kb and storage capacity ratio w. But from
a practical point of view, a drawdown test of this
nature is unlikely, because no practical drawdown
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test can be initiated whose flow rate remains
constant from the onset of the test. And since the
first straight-line segment begins and terminates at
very short times, the theoretical drawdown curves
may be used only to study the basic differences of
the models under investigation. For instance, the
major difference between Warren and Root’s model
and ours is that we have replaced the condition of
quasi-steady state flow in the matrix by unsteady
state. Now, we try to delineate the differences.
Referring to Fig. 6, it may be noticed that the
pressure drawdown of Warren and Root and that of
this study have two important differences. First,
our early straight line is much shorter, and once
flow reaches quasi-steady state conditions, the
two plots converge more closely. Secondly, it is at
early times only that our pressure levels are
slightly higher than that predicted by Warren and
Root. This is physically rational because our
drawdown begins totally as an unsteady-state
regime, and the average pressure before reaching
quasi-steady state is higher.

2. More realistic than a drawdown test is a
pressure buildup test, because the theory and
practice are more compatible, especially in high
potential liquid wells where they can be shut in
with short after-flow duration. Further, bottom-hole
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FIG. 13 — POLLARD PLOT OF CASE 2.
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shut-in is possible. Now, referring to Fig. 7, it may
be noticed that the results of this study and those
of Warren and Root are in very close agreement. In
fact, the effective value of flow capacity may be
calculated very accurately, while the value of w is
overestimated. The error depends highly on Dp, m
and Dp/m. For instance, a large value of Dp' (> 100
psi) introduces negligible errors; while, for Dp <
100, the error can be substantial.

3. The case of a finite reservoir where the
boundary effects have substantially been sensed at
the wellbore is shown by Figs. 8 and 9. If we
consider only the buildup curve, we notice that
because of the boundary effect, the second straight
line is not parallel to the first. Thus, w cannot be
calculated. However, the first straight line yields
correct value of the effective flow capacity, while
the second one overestimates the value. Therefore,
a word of caution is necessary, because in most
practical cases most of the early straight lines are
obscured by afterflow, damage, or nonavailability
of the data. The use of the second straight line,
then, would result in overestimating the flow
capacity. Fig. 9 may be compared with Fig. 10.18
of Ref. 7, where it will be noticed that the two
figures have good resemblance. This may also
enable one to justify the proper straight-line
section of a buildup curve in naturally fractured
reservolirs.

4. Fig. 10 is the pressure drawdown of a case
where A is much larger than 5 x 1076. In this
instance, the early straight line has formed in such
a short time that its measurement is nearly
impossible. The pressure buildup of the same well
will also have a similar character. Thus, for a
fractured reservoir of this nature, the pressure
buildup curve will display only the second straight
line, which, incidentally, substantiates the views
of Odeh.5

5. Fig. 11 is a replot of the quasi-steady state
portion of the drawdown curve for Case 1. Using
the slope of the straight-line section and Eq. 10.14

TABLE 2 — DATA FOR FIG. 12

Summary of Calculations

At, hr Py, psi ;-"Pw, psi AP:PS'I APP, psi aond Pertinent Date

0.0511 3763.00 21597 640 260 5 = 3987.97 psi

0.0767 377158  207.39 550 180 C =152psi

0.1023 3777.59 20138 4.0 130 D = 43psi

0.1432 3784.41 194,56 430 9.3 @;=0.0163hr~1

0.2047 3791.56  187.41 36,4 60 ap=0.636 hr!

0.3276 3800.71 178.26 2.5 20 o3=3.843h!

0.4914 3808,50  170.47 21.0 (PV,.) cate = 2.9 % 10% cu ft
0.6543 3813.98 16499 145 (PV)care =337 % 10% cu ft
0.9010 3820.00 158,97 110 (PVpdct = 3.95% 107 cu #t
1,393 382814 150,83 5.8 (V). =9.85% 105 cu
1966 383457  144.40 2.4 E; = —96.6 percent

2290 - 3837.45 14152 1.5 B, = =99.5 percont

2620 383998  138.99 0.0

3,113 3843.27 135.70
4.256  3849.43 129.54
5.570  3855.08 123.89

8,520 3865.16 113.81
10.486  3870.70 108.27
12,452  3875.61 103.36
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reported by Matthews and Russell,’

= 0.07455 —B ... ®
e d

“&% ep (¢hdyp

one finds that only 2 percent error was introduced
in the calculation of the reservoir radius. This
indicates that behavior of a fractured reservoir, as
described by our model, is nearly identical with
the behavior of multilayer reservoir with crossflow.
In fact, the quasi-steady state occurs at a time
given by Eq. 9.

b) s o2
t = 1,580———£(hours),. N (2

which is comparable to Eq. 10.13 of Ref. 7.

6. Figs. 12 and 13 are the Pollard! plots of
Cases 1 and 2 (for times located between the two
straight-line segments), respectively. It may be
noticed that seemingly valid curves are obtained;
however, there is considerable error in the pore
volume calculations of matrix and fracture based
on these plots and through the application of Egs.
A-2 and A-3, which were suggested by Pirson and
Pirson. (Results are summarized in Table 2). This
is an indication that the Pollard plot may have only
an apparent validity.

7. By curiosity, we removed the restriction that
the flow into the wellbore was only at the fracture
openings; that is, we also allowed the matrix to
flow into the wellbore. The result is shown in Fig,
6. Very little difference may be noticed. Hence,
the quantitative conclusions are not affected.

8. The interference drawdowns affecting the
observation wells, which were 662, 1,003 and 1,519
ft from the test well, are shown in Table 3. These
drawdowns are the calculated values at the fracture
level in the observation wells. The corresponding
calculations for the equivalent homogeneous system
are also shown. It may be noticed that the pressure
drops at the observation wells are considerably
higher for the fractured reservoir than for the
equivalent homogeneous system. The pressure
drops equalize at large times. This implies that
the early interference results cannot be interpreted
by conventional methods; however, at large times
(provided the boundary effects are still negligible)
the conventional interference analysis will result
in calculation of total storage capacity, (¢ycq +
¢2c2)b. This knowledge, in addition to @, should
result in evaluating fracture-matrix pore ratio and
calculation of interporosity flow parameter A, as
discussed in the Application section. The analytical
solution to the interference problem in a naturally
fractured reservoir and further results will appear
in a later report. 13

APPLICATION

From the aforementioned results one may conclude
that in case of a large contrast in matrix-fracture
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flow capacities, the two-line buildup curve, as
suggested by Warren and Root, will form. Indeed
this materializes when interporosity flow parameter
X is very small (say, less than 10-%). From such a
curve one may calculate total flow capacity kb and
pore storage ratio «. Also, from an interference
test the total storage capacity, (pyc; + ¢ocy)h,
may be obtained. Knowing the last three groups of
parameters, ¢,c, and A may be calculated. ¢yc, is
calculated from w and (¢yc; + pycy)h, while A is
obtained from Eq. B-2, by assuming various values
of A until a match is obtained between field data
and calculated points according to Eq. B-2. It is
possible to match only the later straight-line
section accurately.

Once ¢ycy and ¢y + ¢pcy are obtained, ¢y
and ¢, may be roughly calculated. Also, using Eq.
D-3, one may be able to calculate matrix
permeability.
fn?
12r

k = )\............(10)

2
w
where &b, r,, and A are known. Notice that

kb = kbp/N. . . . ... ... .. ..(1D

CONCLUSIONS

This study concludes that:

1. The fractured reservoir characterizations of
Warren-Root3 are applicable to the cases where the
fracture distribution is uniform and the contrast
between fracture and matrix flow capacities is
large. Thus, from a buildup test, the total flow
capacity and ratio of storage capacities in such
double porosity systems should be obtainable.

2. Combining the results of an interference test
and a buildup test on the same well should yield an
approximate value for matrix permeability.

3. Whenever the ratio of flow capacities in the
matrix and In the fracture is small, only one
straight line is noticeable, and this is in

TABLE 3 — INTERFERENCE PRESSURE DRAWDOWNS, PSI, FOR CASEI
Weli No. 1 ot 661.9 ft  Well No, 2 ot 1002.6 ft  Well No. 3 at 1518.8 #t

Fracture Fracture Fracture
Model Equivalent Model Equivalent Model Eguivalent
t, hours i= 19 Model* iz 20 Model i= 21 Model
0.2866 0.243 0.000 0.013 0.000 0.000 0.000
0.4505 0.514 0.000 0.037 0.000 0.001 0.000
0.5733 0.735 0.000 0.062 0.000 0.002 0.000
0.7372 1.035 0.000 0.101 0.000 0.004 0.000
0.9830 1.484 0.000 0.169 0.000 0.009 0.000
1.311 2,064 0.001 0.273 0.000 0.016 0.000
1.966 3.137 0.025 0.504 0.000 0.038 0.000
3.277 4.998 0.341 1.001 0.003 0.099 0.000
4,915 6.980 .39 1.637 0.043 0.198 0.000
7.864 10,126 4.43 2.803 0.407 0.421 0.004
10.49 12,734 7.5% 3.882 Ln 0.663 0.028
15.73 17.657 13.8 6.159 3.29 1,263 0.230
19.66 21115 18.2 793 5.26 1.803 0.563
31.46 30.322 29.0 13.277 1.5 3.766 2.36
47.19 40,346 39.8 19.997 19.1 6.838 573
68.16 50.815 50.6 27.853 27.5 11,165 10.6

*Equivalent model means an equivalent homogeneous model representing the
naturally fractured system.
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accordance with Odeh’s® conclusions.

4. Pollard’s plot of pressure buildup seems to
have only an apparent validity in evaluating
fracture-matrix pore volumes.

5. The behavior of a fractured reservoir
approaches that of an equivalent system of
homogeneous reservoir at large times.

NOMENCLATURE

ay; = exponential decay coefficient for matrix,
cycle/hour

a, = exponential decay coefficient for fracture,
cycle/hour

a3 = exponential decay coefficient for wellbore
region, cycle/hour
B = oil formation volume factor, dimensionless
¢ = compressibility, (atm~1) psi~1
C,D = intercepts in Pollard’s plot, psi
Dp = vertical separation of the buildup curve, psi
E = error, percent

g = gravity, (cm/sq sec) ft/sq sec
b = fracture block thickness, (cm) ft
hp = reservoir thickness, (cm) ft
k = permeability, (darcy) md
k = average (or total) weighted radial permea-
bility, md
m = drawdown or buildup slope, psi/cycle
N = number of fracture openings in wellbore
p = pressure, (atm) psi
P = equilibrium reservoir pressure, psi
b, = well pressure, psi
by = flowing well pressure, psi
PV = pore volume
q = flow rate, (cc/sec) STB/D
7 = radial coordinate, (cm) ft
'r, = reservoir radius, (cm) ft
r, = well radius (cm) ft
s = skin factor, dimensionless
t = flow time, (sec) hour
tp = dimensionless time
tf = time when first straight line disappears
Tp = total flow time, dimensionless
z = vertical coordinate, (cm) ft
6 = fracture thickness, (cm) ft
A = interporosity flow parameter
[ = viscosity, cp
p = density, (gm/cc) slug/cu ft
¢ = porosity, fraction
?5 = average bulk porosity
® = flow potential, (atm) psi*
@ = ratio of storage capacity of the fracture to

total storage capacity

*Major equations are derived using Darcy units shown in
parenthesis.
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Ap = first difference for Pollard plot, psi
App = second difference for Pollard plot, psi
At = buildup time, (sec) hour

SUBSCRIPTS AND SUPERSCRIPTS
1 = matrix; attached to bulk matrix properties
2 = fracture; attached to bulk fracture properties

[ = fracture; attached to point fracture
properties

~.
It

radial mesh points

j = vertical mesh points
(k) = iteration number

m = matrix; attached to point matrix properties
7 = time step

s = damaged zone

T = total (over-all) property
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APPENDIX A

SUMMARY OF POLLARD AND
PIRSON-PIRSON FRACTURED RESERVOIR

ANALYSIS
PRESSURE BUILDUP
p - p,(0t) = C s UL I
- - . (A-1
+(p-pwf-C-D)ea3At ( )
0.234 gB 3
= ... (A2
=33 a; (CHD) ¢ ° fe (4-2)
PVf = —O_.-Z—M.—__ s ft3' « e e e (A—3)
2.3 ap D cf
0,234 qB

PV, = -
ST 23a3 (G -pyr-C-D ¢, °

63 . (A4

The constants ay, @y, a3, C and D may be
obtained from the plot of data as shown
schematically by Fig. 1. The first, second and
third terms of the right-hand side of Eq. A-1
represent the decaying transients in the matrix,
fracture and wellbore region, respectively.

APPENDIX B

WARREN AND ROOT
FRACTURED RESERVOIR ANALYSIS3

PRESSURE DRAWDOWN IN INFINITE RESERVOIR

b, tp) = b; - M §log t +.351
E by

+.435 Ei [-Atp /0 (1 - 0)]
~.435 Ei [-Atp /(1 - )] + .87 si.
(B-1)

PRESSURE BUILDUP IN INFINITE RESERVOIR

pw(AzD) =p; - 162'E q”B{log
by

tp + Aty

AZD
- .435 Ei [- M\ /o (1 - w)]

+ 435 Ei [-\Atp /(1 - w)]} , . (B-2)
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where
-4 -
- 2.637 x 10 kt . . (B-3)
(@1eq + Bpc9) H rw2

t

CALCULATION OF. @ FROM BUILDUP CURVE

Pnc
o"2-303 (Dp/m) _ 272 (my

w:
$1c1 T P20y

MINIMUM TIME BEFORE
QUASI-STEADY STATE BEGINS

Quasi-steady state in a spherical flow as well as

in linear flow occurs at approximately 7, hours
as given by Chatas:12,13
: 2
¢1cqbL
. = 1 Zlk .. (BS)
S -
4% 2,637 x 107 1

Converting Eq. B-5 into dimensionless time by
substituting Eq. B-5 in Eq. B-3, we get

¢, ¢ =
(t) == 11 2 _k__(B-6a)
D’gss 2 ¢g1c] + $2¢9 ky Ty,
or
1 2 _k
(tp) = = (1-0) L* —— . . . . (B-6b)
Plass 2 kiry
o k k
1 2 4n (0+2) 1 -2
B = = —
ut A - Ty, Vi - T,
(seeRef.3),. . . ... .... (B7

where n = number of normal sets of fractures, 1, 2
or 3. [ is the characteristic dimension of the
heterogeneous region.

From Egs. B-6b and B-7, we can write

2
q%$=%%¥<%>wnmun-®@

If the dimensions of the parallelepiped are 4, &
and c, then3

3 abe

l=(ab+bc+ca) s =3

2 ab

= e— - B-
£ (atb) ;s n=2 (B-9)
L= a ;n=1

Notice that if @ = b = ¢, then { = a =56 = c Let
us assume that L in Eq. B-5 can be replaced by
the smallest dimension of the building block. Then
we can also show that £ 2> L. Therefore { = y L,
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where y > 1. Substituting in Eq. B-8 we get

() 1 l1-w 4dn(n + 2)
thss“z A y :

. (B-10)

Let us now find the minimum of (tplgss while we
hold « and A constant. Let 1 <y < 100 and n = 1,
2, 3. Thus,

(tD%ss - ¢ l{& .. . .. .. (B-lla)

where .06 < ¢ < 30.
A reasonable ¢ will be larger than unity; however,
we chose ¢ = 1 for our discussion. Thus,

=Yoo . (B-11b)
(tD)qss A

From Fig. 5 of Ref, 3, the values of £ (that is,
the time where the first straight line disappears)
were measured and then recorded in the upper half
corner of each square in Table 4, The lower halves
were filled with the values calculated from Eq.
B-11b. By comparison of these entries, one notices
that especially for practical cases where A < 1076,
the time before quasi-steady state begins is larger
than the time of the disappearance of the early
straight line. This implies either a paradox or
inconsistency in Warren and Root’s model.
Nevertheless, we felt this was inconclusive and
set out to study the problem further as shown in
the main text.

CALCULATION OF EFFECTIVE FLOW CAPACITY

fh = 102.6 quB . (B-12)
m

TABLE 4 — VALUES OF ¢}

W .001 .01 .1
"
10° 10° 107
5 x 1077
2. x 108] /2. x 18| A.8 x 10
102 10° 10*
5 x 10'6
2. x10° | /2. x 10° | A.8 x 10°
1071 10° 10!
5 x 1073
2. x 102| /2. x 102 | A.8 x 10*
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APPENDIX C

ADI PROCEDURE FOR SOLVING
SYSTEMS 1 THROUGH 6

Referring to Fig. 4 and due to radial symmetry of
flow equations, we have taken a pie-shaped slice of
this basic structural unit of the reservoir and have
covered it by a grid of mesh points (see Fig. 5).
The wellbore axis is located in the apex.

First, we introduced the transformation u =
In(7/r,,) in the system of equations. The grid points
were then chosen equidistant in the wu-direction.
This, of course, allows very close spacing of the
mesh points around the wellbore where the pressure
gradients are high.

We did not introduce any transformation for
z-direction. However, we chose the first three rows
(starting with the fracture) to be uniformly spaced.
The remaining rows were spaced with gradually
increasing mesh distances.

Secondly, notice that there is no flow across the
top, the right-hand and the left-hand boundaries of
the model, except at mesh point (1,1); that is, the
fracture. Since the first row is the fracture axis, it
is a plane of symmetry and a no-flow condition is
in force. To represent the horizontal flow component
at mesh point (1,1) by no-flow condition while the
actual flow has been taken into account, we
include an equivalent source term at (1,1) into the
finite difference equation of Eq. 2. In fact, in the
case where we wish the flow to occur into the
wellbore at the entire mesh points of column one,
we assume a no-flow condition on the left boundary
and add proper source terms to Eq. 1.

Finally, a set of finite difference equations
obtainable from Systems 1 through 6 is (recall that
® is replaced by p):

u-DIRECTION

( (i-l)Au52 1 [ ( (k+1)
Tw e (bwy? b i3 Pit+1,5,n+1
_ (kD) ) -k (p(k+1)

i»j)n+1 i'%)j i’] ,ﬂ+1

(k+1) ) ] r ( (k)
= Pio1,g,mt/ LR, 54 \PL e
RCTD /A Cx (x)

P j,n+l 24y T “4,3-% \Pi,j,ntl

) "(ilf)j-l,nﬂ)/“zj-a :‘

2 9 iuB
+ —la - YT T
211 r‘% [\zj e(l 1 Au {elAu _ e(l )uu]
(k+1)
6. . c Pi i+l ~Piin ... (CD
M 955 %L YIRS
1=1, 2, ,1; 3 =2,3, ,J,n=0,
1,2,3,...;k=0,1,2,...K.
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(i-l)Au)'z 1T (k+1)
(rw e (Au)2 Lki+ ,1 \p1+1 1,n+l
(H1) ) (k+1)
i,1,n+1/ i-%,1 \Pi,1,n+1
(k+1) ) :l ( (k)
Pi-1,1,n+1 . Pi,2,0+1
- k) 3
Pi,1intl/ [/ (2p-29)
2q; HB
+ — 2 —
o rs} Azl e(]. 1) Au LelAu _ e(l 2) hu :l
(k+1)
e Pilaty - Pian L L (G2
W 8;1%,1 bt Ly o
‘2

1=1,2,...,13n=0,2,3,...; k =0,1,2,...,K.

Another set of equations similar to Eqs. C-1 and
C-2 must be written for the z-direction. This is
done by replacing the iterative index (k) by (k + 2),
while (k& + 1) is fixed everywhere except on the
right-hand sides of Eqs. C-1 and C-2, where k& + 1
becomes £k + 2.

To take the boundary conditions into account, we
made use of mirror images at the boundaries. This
is why we were interested in introducing a no-flow
condition at all boundary mesh points. The initial
condition (6) is also accounted for when n = 0.

In Eqs. C-1 and C-2 the following notations were
used:

1 Ie

a = e———

(a) Au 1-1 1n T

(b) Azj = (z, -z, l)/2

j+1 -

(@ b2y = 2341 7 %

@k 3= 2Ry K5 0 (g s
kg )

@k 513 =2k s Ky O]
+ ki,j)

) Atn+1/2 = tn+1 - tn

Also, the following points are worth noting.

0 for all i’s and

i

(&) qi,j

7=2,...,7].

(h) gy, = four times the flow rate at mesh point
(1,1). The factor 4 is a reflection
factor.

DECEMBER, 1969

(i) Azy = Azyy,, = Azy,,, = 0. This particular
choice was made for what follows
in (}).

(j) If Eq. 2 is replaced by

13 7/ ép) 3 (. 2p
r or \Ke¥ 3y + 37 \k¢ 35,/
op .
$p b Cg 3¢ 3

)
0<z <7, rw<r<1’.‘e

and approximated by the usual three-point central
difference formula, one notices that the result is
equivalent to Eq. C-2, provided provision (i) is met,
This simply implies that one can obtain identical
results by solving Eq. C-1 by ADI procedure,
provided the index, j, runs from 1 to J. The solution
of such a system may be obtained as described in
Ref. 9.

NOTES ON COMPUTING

Systems 1 through 7 are expressed in Darcy units
(see Ref. 7, p. 16); when expressed in practical
units, one must multiply the right-hand sides of
Eqs. C-1 and C-2 by 3,800 and the source term by
141.2(27). The sign of g is negative for production.

If practical field units are used, the first time
step should be about 10-® hours. The time step
may be increased by a factor of 2 for every 10 time
steps. The total number of iterations for each time
step is about 2 to 4, provided a pressure tolerance
of ¢ = 10~ is used. The convergence criterion is

)
P; in+l ~ Pi,i,ntl
(k+2)
i 7 Pi,5,n41

<€ .

We have provided for 25 x 21 mesh points on an
IBM 360/65, using only core storage. However, we
have used mostly 24 x 10 mesh points in some of
our calculations. The total time for a complete
pressure drawdown and buildup case is about 12
minutes (for drawdown alone, it is about 6 minutes).
The material balance error is less than 3 percent,
while flow rate error is less than 0.05 percent.

APPENDIX D

CALCULATION OF WARREN-ROOT
CHARACTERIZATION PARAMETERS w AND A

Warren and Root3 suggested that two parameters
were sufficient to characterize the deviation of the
behavior of a medium with double porosity from
that of a homogeneous porous medium. One of the
parameters o was defined by Eq. D-1,

@22

. (D-1)
9161+ 89¢,

w =
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It is the ratio of the storage capacity of the
secondary porosity (fracture) to the total storage
capacity of the medium. The second parameter A
was defined by:

2

ok, r
N —bt ¥ (D)

k

This  dimensionless  parameter governs the
interporosity flow. Notice that ¢ is a shape factor
(has the dimension L~2) and reflects the geometry
of the matrix elements. For instance, it is equal to
12/h? for the simplified structural model of this
paper. Thus,

N | ;’,:.r_w>2 3w iVL-)Z .03
Tk M/ T T f \h/2
where
k.8 + k_(h-5)
=L = (D-4)

Eq. D-1 may be written as Eq. D-5:

(BV/BV)
© T VB o * (Ve cf

In(e2 - /D] gpe;

2 - 1) (h-8) /2 g Hn(rh - £2) (8/2) I e
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or

6 ¢cy

. : .(D-5)
© T (h8) g + 8 Pecg

Egs. D-3 through D-5 will be used to calculate A,
k and ®, respectively. Average porosity ¢ may be
calculated from:

h

(D-6)

é:

The individual bulk porosities, ¢; and ¢,, may be
calculated in terms of point porosities, ¢,, and 8
by Egs. D-7 and D-8, respectively.

(h-8) ¢
¢1=_T___I.n,.........(D-7)

6 ¢¢ b.8)
S oe—— .o e e -8
2 - (
It is worthwhile to notice that ¢,, and ¢y are point
functions and represent local (or point) porosities,

while ¢, and ¢, are bulk porosities for matrix and
fracture, respectively.

* %k %
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