Abstract

Numerous single-phase flow and oil-recovery tests were carried out in unconsolidated sands and Berea sandstone cores using C14-tagged, hydrolyzed polyacrylamide solutions. The polymer-retention polyacrylamide solutions. The polymer-retention data from these flow tests are compared with data obtained from static adsorption tests. Polymer concentrations in produced water in Polymer-flooding tests were studied using various Polymer-flooding tests were studied using various polymer concentrations, slug sizes, salt polymer concentrations, slug sizes, salt concentrations, and different permeability sands. Results show that polymer retention by mechanical entrapment had a dominant role in determining the total polymer retention in short sand packs. However, the role of mechanical entrapment was less in the large-surface-area Berea cores. In oil-recovery tests, high polymer concentrations were noted at water breakthrough in sand-pack experiments, an indication that the irreducible water was not displaced effectively ahead of the polymer slug. However, in similar tests with Berea cores, a denuded zone developed at the leading edge of the polymer slug. polymer slug. The existence of inaccessible pore volume to polymer flow is shown both in sand packs and in polymer flow is shown both in sand packs and in sandstone cores. Absolute polymer-retention values show an almost linear dependency on polymer concentration. The effect of polymer slug size on absolute polymer retention is also discussed. Distribution of retained polymer in sand packs showed an exponential decline with distance. The "dynamic polymer-retention" values in short sand packs showed much higher vales than the ‘static packs showed much higher vales than the’ static polymer-adsorption" values caused by mechanical polymer-adsorption" values caused by mechanical entrapment. The mechanism of polymer retention in silica sands and sandstones is described, based on the observed phenomenon.

Introduction

It is widely recognized that, as polymer solution flows in a porous medium, a portion of the polymer is retained. It is evident that both physical adsorption and mechanical entrapment contribute to polymer retention. The question of the relative importance of these retention mechanisms has not been studied adequately. The effect of residual oil saturation on polymer retention and the polymer retention during the displacement of oil from porous media has also been studied inadequately. Mungen et al. have reported a few data on polymer concentration in produced water in oil-recovery tests. However, no produced water in oil-recovery tests. However, no comparison was made between polymer retention at 100-percent water saturation and at partial oil saturation. It has been shown that the actual size of the flowing polymer molecules, with the associated water, can approach the dimensions of certain smaller pores found in porous media. Therefore, an inaccessible pore volume exists in which no polymer flow occurs. In this study, the existence polymer flow occurs. In this study, the existence of inaccessible pore volume is shown clearly, both in sand and sandstone. Although polymer-retention values have been reported for various conditions, correlation is difficult because of the differing conditions of measurements. The effect of slug size, polymer concentration, salinity, and type of porous media on polymer retention has not been systematically studied. The purpose of this study was to develop answers to these questions, rather than to provide adsorption data for actual field core samples. For this reason, unconsolidated silica sands were used in most of the experiments reported. This permitted identical, uniform single-layer and multilayer porous media to be constructed for repeated experiments under varying test conditions. Some experiments were also carried out in Berea sandstone cores to determine whether sand-pack results can be extrapolated to consolidated sandstones. Using a C 14-tagged polymer provided a very rapid, simple, and accurate polymer-concentration determination technique.

SPEJ

P. 323

This content is only available via PDF.
You can access this article if you purchase or spend a download.