Enhancing the production in liquid-loaded horizontal natural gas wells using an acoustic liquid atomizer tool is proposed as a possible artificial lift method. The more liquid that is converted to droplets, the more available gas is able to carry the liquid to the surface, resulting in an increase in production. The acoustic atomizer was selected to be the atomization device as it can create very small droplets at certain frequencies leading to a mist flow.

The contribution of this research includes obtaining experimental data using different laboratory procedures for horizontal and slightly inclined tubulars. Two-phase (gas and water) injection stream lines are joined to the test section to introduce gas and water at desired rates. An ultrasonic atomizer inside the test section is used to better understand the atomization mechanism as an artificial lift technique. Several experiments with varying factors influencing the acoustic properties are tested including varying liquid and gas rates, four different frequencies, two different flow pipe inclination angles, and two different acoustic device orientations.

The results show that when using frequencies of 62 and 62.5 kHz, the outcomes were almost identical for horizontal and slightly inclined pipe. Both frequencies reduced liquid film accumulation by 1% at lower (0.001 m/s) and higher (0.0168 m/s) liquid velocities while gas velocity was kept at 14 m/s. The performance of the acoustic tool was highly dependent on the orientation of the tool inside the flow loop due to its atomizer geometry, shape and size. Sprayers facing up (0°, original case) helped the droplets to be carried by the gas since the gas occupies the top portion of the pipe and did not block the atomizer. The sprayers failed to work while facing the bottom of the pipe (180°) due to water accumulating around the sprayers, plugging the atomizer and hindering it from working. Using an orientation of 90° (sprayers facing sideways) provided better results and positive impact in reducing the liquid film level. The efficiency of the tool decreases in slightly inclined wells. As more liquid quantity accumulated in the well, the atomization technique seems to be slow in reducing the liquid film height.

This research presents a set of diverse experimental data to suggest acoustic atomization might be used as a possible artificial lift technique in horizontal wells. The technique shows a 1-4% improvement which might be experimental error or in experimental control. Thus, the device used in the lab needs improvement to work as efficiently as other artificial lift techniques to possibly enhance production.

You can access this article if you purchase or spend a download.