Liquid loading is a major challenge in natural gas wells. Enhancing the production in liquid loading natural gas wells using an acoustic liquid atomizer tool is proposed as a possible artificial lift method. The effect of different droplet sizes on the transport efficiency and the performance of the proposed technique during production are studied using Computational Fluid Dynamics (CFD) simulation. Also, the liquid behavior and fluid dynamics after applying the atomization mechanism are reviewed.

In the model, the tool is placed axially in the middle of the gas/air flowing wellbore. To reduce computational time, the tool and pipe are cut symmetrically. The pipe diameter is 4 in, and the four injectors diameters are each 0.04 in. The orientation of the injectors is set to 90° with the sprayers facing sideways, while water liquid droplets are injected from the tool surface into the air flow at angles from 45° to the flow direction. Unstructured hybrid mesh is used to allow the cells to assemble freely within the complex geometry. Sensitivity tests were conducted with droplet sizes ranging between 30-300 µm.

The CFD results showed that water liquid droplets of size 30 µm followed the pathway along the tool surface due to the low mass of the droplets and high air velocity. This phenomenon is called wall impingement and occurs where the droplets are very small and clustering on the wall. The 200 and 300 µm water liquid droplets kept their inertial high chaotic movements in all directions within the computational fluid domain due to the increased weight of the droplets. These larger sized droplets withstand the backpressure from high turbulent air velocity and tend to keep their inertial turbulent movement.

This research presents a set of CFD results to further evaluate acoustic atomization as a possible artificial lift technique. This technique has never been commercially applied in the oil and gas industry, and continued evaluation of such methods is a vital addition to the industry as it brings the potential for new lower cost artificial lift technologies. If completely developed, this technique can bring a cost-effective solution compared to conventional artificial lift methods.

You can access this article if you purchase or spend a download.