Previous theoretical researchers successfully generated viscous finger patterns by assuming a randomly distributed boundary condition in their numerical models. Our objective is to identify a natural source of the randomness that underlies their success. A source of fluid flow instability is discerned by viewing fingering as a chaotic (nonlinear dynamical) phenomenon.

We begin by showing that miscible displacement models can be expressed as nonlinear generalizations of the linear convection-dispersion equation. A nonlinear dynamical analysis technique is used to study the stability of the nonlinear system. Detailed study of several ID and 2D cases illustrates the applicability of the stability analysis.

You can access this article if you purchase or spend a download.