The drill-out, clean-up, and testing of a hydraulically fractured well is critical to ensure stimulation success. This period is important both for production and environmental reasons, due to the high risk of gas release. Most wells require a sand separator during clean-up, which are a source of fugitive emissions. These emissions often go unreported during flowback due to the challenge in their quantification.

This work improves on a study by Wasfy et al (SPE, 2019) which investigated sand separator fugitive emissions. The analysis is improved by categorizing the differences in draining mechanisms between four different separator styles: vertical cyclonic separators, horizontal separators, spherical separators, and vortex separators. A simple 3-stage mathematical model is presented to calculate emissions based on drain duration for online sand separators which are drained without isolating the vessel. A vortex separator was found to provide the lowest overall fugitive emissions release. Prior work was found to have significantly underestimated the emissions released by horizontal separators.

Field experiments were performed using freestanding atmospheric gas plume sensors to validate the model. Measured gas releases were within 6% of the volume predicted by the 3-stage model at field conditions. This model can be used by engineers to accurately assess different styles of sand separators in hydraulic fracturing, allowing for more accurate reporting and quantification of fugitive emissions.

You can access this article if you purchase or spend a download.