Abstract

Egypt's Western Desert contains a series of basins underlain by organic-rich shales that provide the source for conventional hydrocarbon. The primary objectives for exploring the gas-rich shale plays and unconventional reservoirs in the Western Desert were to evaluate the Middle Jurassic Khatatba source rock reservoir qualities, demonstrate the availability of reserves, and identify optimal technology to maximize productivity of unconventional low-permeability reservoirs, stimulation, and testing strategies.

In 2014, a vertical exploratory data well was drilled and completed in the appraisal program before the completion of horizontals in this formation. Logs, core testing, and analysis service data were performed on or collected from this well. A stimulation model was built, which integrated petrophysical and geomechanical data. This model was used to aid the completion and stimulation design, including fracturing fluids and proppant selections. One-stage hydraulic fracturing was implemented, and the well was then flowed back and produced.

The Khatatba Shale was systematically studied in this work. Various methods were used to understand this source rock. A geological study identified the lithostratigraphic section of the Khatatba Shale formations by collecting core samples. Core tests measured total organic carbon (TOC), brittleness, and sensitivity to fluid. These understandings helped reduce uncertainty during hydraulic fracturing operations. A successful hydraulic fracturing treatment was performed for this formation, which showed that low-viscosity fracture fluid can be used as the treatment fluid to carry proppant into the formation. During fracturing, near-wellbore (NWB) multiple fractures can be an issue. From an operational point of view, there might be options better than performing high-rate fracturing treatments. The lessons learned from this work and presented in this paper helped define completion and stimulation technologies for horizontal wells.

This paper presents hydraulic fracturing treatment of the first shale gas well in Egypt for the Khatatba formation. Lessons learned about geochemical, rock mechanical, and petrophysical properties of this shale formation and their effects on hydraulic fracturing and production formed the basis for subsequent development of various shale plays in Egypt and worldwide.

You can access this article if you purchase or spend a download.