This paper presents computational techniques to predict the fully unsteady interaction of two hydrofoils (rotor and stator) and to calculate the unsteady trailing wake geometry in the case of a propeller. A boundary element method is developed to simulate the unsteady performance of moving and stationary hydrofoils interaction in 2-D. The wakes of the two hydrofoils are determined in time by applying a force-free condition on each wake surface. The results of the present method are compared with those from viscous flow calculations in 2-D, by using a commercial RANS solver (FLUENT) on the same 2-D hydrofoil set-up and conditions. The effect of the unsteady rotor/stator interaction is studied. The method then is extended in 3-D to calculate the unsteady trailing wake of propeller flow, and validated with experimental data.

This content is only available via PDF.
You can access this article if you purchase or spend a download.