With an increasing emphasis on emission restrictions and environmental impact of carbon-based energies, transportation industries are rapidly focusing on research, development, and implementation of zero-emission fuels and technologies. In the United States, the maritime industry provides key transportation services for people and goods. Immediate and future legislation at the state and federal levels are beginning to push passenger vessel operators to seek more carbon-neutral propulsion methods and begin the necessary transition towards a zero-emission future. Small high-speed, zero-emission vessel concepts are being introduced in the United States, most notably the SWITCH project of San Francisco. The SWITCH project aims to put the first hydrogen fuel cell e-ferry into service in 2021. To date, the zero-emission fast ferry efforts have focused on smaller passenger vessels.

This paper examines the potential design elements and operating conditions required for a large (450 passengers) high-speed vessel to meet zero-emission standards. Key ferry metrics of speed and passenger capacity are studied with this concept hull to compare a zero-emission propulsion system against a more traditional carbon-based system. To account for major project decision factors, the economics/cost and regulatory restrictions of a hydrogen fuel cell system are considered for a high-speed passenger vessel of this scope. A sensitivity analysis is performed to determine the technological and performance gains necessary for fuel cell power to match the current capabilities of carbon-based powers. Future development of zero-emission technologies is discussed to evaluate the continually improving opportunities for such a large high-speed vessel.

This content is only available via PDF.
You can access this article if you purchase or spend a download.