An effective method to reduce ship drag is to supply air under specially profiled bottom with the purpose to decrease wetted surface area of the hull and thus its water resistance. Although such systems have been installed on some vessels, the broad implementation of this technique has not yet occurred. A major problem is how to sustain air lubrication in rough water. Modeling of air-ventilated flows is challenging, but modern computational fluid dynamics tools can provide valuable insight. In this study, a wide-beam, shallow-draft hull with a bottom air cavity is considered. This hull imitates a semi-planing boat that can be used for fast transportation of cargo from large marine vessels to shallow shores. To simulate fluid flow around this hull in calm water and head waves, as well as heave and pitch motions of the boat, CFD software Star-CCM+ has been employed. It is found that the air cavity effectiveness decreases in waves; vertical accelerations exhibit high-frequency oscillations; and heave, pitch and vertical accelerations increase, while time-averaged heave, pitch and added drag show non-monotonic behavior with increasing wave amplitude. The air-cavity hull also demonstrates substantially lower vertical accelerations in waves in comparison with a similar solid hull without bottom recess. Time histories of kinematic parameters and distributions of flow field variables presented in this paper can be insightful for developers of air-cavity hulls.

This content is only available via PDF.
You can access this article if you purchase or spend a download.