As the operational requirements of landing craft expand to faster speeds and higher sea states, more complex hullforms are being proposed to meet these requirements. The seakeeping performance of such vessels can become difficult to predict. Analytical tools must be flexible in order to handle the variety of operating conditions, hull geometries, loading conditions, and other attributes. The analytical seakeeping models should be based on the physical models of the hydrodynamic phenomena rather than case-specific empirical tuning. This paper describes a study that evaluated the ability of the Large Amplitude Motion Program (LAMP) to simulate traditional and non-traditional landing craft hullforms in varying operating conditions. The hullforms include a traditional semi-planing monohull, a semi-planing water jet propelled “W” shaped hull, a water jet propelled catamaran, and a catamaran Surface Effect Ship (SES) style hull. The measures taken to model each hullform and test conditions in LAMP are discussed and the correlation between experimental data and LAMP predictions are presented through comparisons of motions and accelerations.

This content is only available via PDF.
You can access this article if you purchase or spend a download.