In order to explore the corrosion effect of CO2 and H2S in oilwell cement, the samples were exposed to a CO2/H2S environment. The permeability, microstructure, chemical composition, and tensile strength of the cement samples were measured by a pulse pore-permeability tester, scanning electron microscope (SEM), X-ray diffraction (XRD), and rock tensile compression tester, respectively. The corrosion behavior and mechanism of the cement samples were analyzed. The experimental results show that the corrosion degree increases with the exposure time, and the permeability increases from 0.0003 md on the seventh day to 0.0646 md on the thirtieth day. It can be concluded from the microscopic morphology that the internal structure of the corroded cement sample is compact, without an obvious loose structure, but there are some particles with different particle sizes. The composition phases of the products after corrosion are mainly calcium carbonate and silica, and the content of calcium carbonate in the corrosion area increases obviously. The tensile strength of the tested cement sample is only 9.8 MPa. The reaction of gaseous CO2 and H2S with calcium-bearing phases in a cement sample is known to cause a lowering of alkalinity, leading to the corrosion of the cement sample. Due to the existence of carbonation, carbon dioxide will gradually diffuse into the interior of the cement sample and react with hydrogen ions, calcium ions, and bicarbonate ions in the pore fluid of the cement sample to form varieties of calcium carbonate, resulting in the shrinkage of the cement sample, surface cracks, and ultimately affecting the compactness and sealing effect of the cement sample.
Skip Nav Destination
Article navigation
October 2022
October 01 2022
Corrosion Behavior and Mechanism Analysis of Oilwell Cement Under CO2 and H2S Conditions
Chengyu Zhou;
Chengyu Zhou
Chongqing University of Science & Technology
Search for other works by this author on:
Linghao Zeng;
Linghao Zeng
Chongqing University of Science & Technology
Search for other works by this author on:
Yuan Sun;
Yuan Sun
Chongqing University of Science & Technology
Search for other works by this author on:
Min Zhou;
Min Zhou
Chongqing University of Science & Technology
Search for other works by this author on:
Mingyao Lei;
Mingyao Lei
Chongqing University of Science & Technology
Search for other works by this author on:
Yufeng Luo;
Yufeng Luo
China National Petroleum Corporation
Search for other works by this author on:
Bo Wu;
Bo Wu
Sichuan Zhongze Oil Field Technology Service Co. Ltd.
Search for other works by this author on:
Peng Zhang;
Peng Zhang
Chongqing University of Science & Technology
Search for other works by this author on:
Ying Xiao
Ying Xiao
China National Petroleum Corporation
Search for other works by this author on:
Petrophysics 63 (05): 642–651.
Paper Number:
SPWLA-2022-v63n5a5
Article history
Received:
December 13 2021
Revision Received:
May 12 2022
Accepted:
May 30 2022
Published Online:
October 01 2022
Citation
Zhou, Chengyu, Zeng, Linghao, Sun, Yuan, Zhou, Min, Lei, Mingyao, Wan, Wei, Luo, Yufeng, Wu, Bo, Zhang, Peng, and Ying Xiao. "Corrosion Behavior and Mechanism Analysis of Oilwell Cement Under CO2 and H2S Conditions." Petrophysics 63 (2022): 642–651. doi: https://doi.org/10.30632/PJV63N5-2022a5
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$10.00
Advertisement
38
Views
Cited By
Email Alerts
Advertisement
Suggested Reading
Advertisement