Reliability and Uncertainty of Prediction of Dynamic Elastic Constants in Reservoir Rock
- Authors
- Hamid Reza Nejati (Tarbiat Modares University) | Abdolhadi Ghazvinian (Tarbiat Modares University) | Mohsen Saemi (Tarbiat Modares University)
- DOI
- https://doi.org/10.2118/155503-PA
- Document ID
- SPE-155503-PA
- Publisher
- Society of Petroleum Engineers
- Source
- Journal of Canadian Petroleum Technology
- Volume
- 51
- Issue
- 03
- Publication Date
- May 2012
- Document Type
- Journal Paper
- Pages
- 198 - 204
- Language
- English
- ISSN
- 0021-9487
- Copyright
- 2012. Society of Petroleum Engineers
- Disciplines
- 5.6.3 Deterministic Methods, 4.1.5 Processing Equipment, 1.2.3 Rock properties
- Keywords
- Dynamic elastic constant, uncertainty, Monte Carlo simulation, reservoir rock
- Downloads
- 2 in the last 30 days
- 445 since 2007
- Show more detail
- View rights & permissions
SPE Member Price: | USD 12.00 |
SPE Non-Member Price: | USD 35.00 |
Summary
The prediction of dynamic elastic constants of reservoir rocks is one of the most important aspects of petroleum engineering. In recent years, several studies have been performed for this purpose. Because of uncertainty and variability in natural materials, deterministic prediction of rock properties in the reservoir is not reasonable. The purpose of this study is to evaluate uncertainty in dynamic-elastic-constant prediction for reservoir rock. Dipole-shear-sonic-image (DSI) log data from one of the Saudi Arabian reservoirs are used to evaluate uncertainty in dynamic-elastic-property prediction. For this purpose, a multiple linear regression (MLR) is carried out to present an empirical equation for shear-wave (S-wave) velocity prediction. Then, probabilistic analysis using Monte Carlo simulation (MCS) is performed to evaluate the uncertainty and reliability in prediction of dynamic elastic constants (Young's modulus and Poisson's ratio). On the basis of the analysis, uncertainty and variability of rock elastic constants are considered, and the value of Young's modulus and Poisson's ratio in a special interval from the reservoir are determined with a certain probability. Finally, the impact of log-data parameters on the value of rock elastic constants in the reservoir interval is assessed.
File Size | 3 MB | Number of Pages | 7 |
References
Akin, M.K., Kramer, S.L., and Topal, T. 2011. Empirical correlations ofshear wave velocity (Vs) and penetration resistance (SPT-N) fordifferent soils in an earthquake-prone area (Erbaa-Turkey). Eng. Geol. 119 (1-2): 1-17. http://dx.doi.org/10.1016/j.enggeo.2011.01.007.
Al-Shayea, N.A. 2004. Effects of testing methods and conditions on theelastic properties of limestone rock. Eng. Geol. 74 (1-2):139-156. http://dx.doi.org/10.1016/j.enggeo.2004.03.007.
Armstrong, P.N., Chmela, W., and Leaney, W.S. 1995. AVO calibration usingborehole data. First Break 13 (8): 319-328.
Bakulin, A., Sinha, B.K., and Prioul, R.C.A. 2004. System and method forestimating subsurface principal stresses from seismic reflection data. USPatent No. 6,714,873.
Bastos, A.C., Dillon, L.D., Vasquez, G.F., and Soares, J.A. 1998.Core-derived acoustic, porosity & permeability correlations for computationpseudo-logs. Geological Society, London, Special Publications 136 (1): 141-146. http://dx.doi.org/10.1144/gsl.sp.1998.136.01.12.
Boness, N.L. and Zoback, M.D. 2006. A multiscale study of the mechanismscontrolling shear velocity anisotropy in the San Andreas Fault Observatory atDepth. Geophysics 71 (5): F131-F146. http://dx.doi.org/10.1190/1.2231107.
Castagna, J.P., Batzle, M.L., and Eastwood, R.L. 1985. Relationships betweencompressional-wave and shear-wave velocities in clastic silicate rocks.Geophysics 50 (4): 571-581. http://dx.doi.org/10.1190/1.1441933.
Castagna, J.P., Batzle, M.L., and Kan, T.K. 1993. Rock physics—the linkbetween rock properties and AVO response. In Offset-DependentReflectivity—Theory and Practice of AVO Analysis, ed. P. Castagna and M.M.Backus, No. 8, 124-157. Tulsa, Oklahoma: Investigations in Geophysics series,Society of Exploration Geophysicists.
Chandler, A.M., Lam, N.T.K., and Tsang, H.H. 2005. Shear wave velocitymodelling in crustal rock for seismic hazard analysis. Soil Dyn. EarthquakeEng. 25 (2): 167-185. http://dx.doi.org/10.1016/j.soildyn.2004.08.005.
Domenico, S.N. 1984. Rock lithology and porosity determination from shearand compressional wave velocity. Geophysics 49 (8):1188-1195. http://dx.doi.org/10.1190/1.1441748.
Eberhart-Phillips, D., Han, D.-H., and Zoback, M.D. 1989. Empiricalrelationships among seismic velocity, effective pressure, porosity, and claycontent in sandstone. Geophysics 54 (1): 82-89. http://dx.doi.org/10.1190/1.1442580.
Evans, M., Hastings, N.A.J., and Peacock, B. 1993. StatisticalDistributions, second edition. Hoboken, New Jersey: John Wiley &Sons.
Garat, J., Stellingwerf, J., Ventre, J., and Krief, M. 1990. A PetrophysicalInterpretation Using The Velocities Of P And S Waves (full-waveform Sonic).The Log Analyst 31 (6): 354-369.
Gassmann, F. 1951. Über die elastizität poröser medien.Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 96: 1-23.
Greenberg, M.L. and Castagna, J.P. 1992. Shear wave velocity estimation inporous rocks: theoretical formulation, prelimining verification andapplications. Geophys. Prospect. 40 (2): 195-209. http://dx.doi.org/10.1111/j.1365-2478.1992.tb00371.x.
Hardin, B.O. and Drnevich, V.P. 1972. Shear Modulus and Damping in Soils:Measurement and Parameter Effects (Terzaghi Leture). ASCE Journal of theSoil Mechanics and Foundations Division 98 (6): 603-624.
Hardin, B.O. and Richart, F.E. 1963. Elastic Wave Velocities in GranularSoils. ASCE Journal of the Soil Mechanics and Foundations Division 89 (1): 603-624.
Henning, A. 2000. Shear-wave velocity estimation in the deepwater Gulf ofMexico. SEG Technical Program Expanded Abstracts 19 (1):1723-1726. http://dx.doi.org/10.1190/1.1815753.
Johnson, R.B. and DeGraff, J.V. 1988. Principles of EngineeringGeology. New York: John Wiley & Sons.
Li, Y., Hunt, L., and Downton, J. 2000. Sensitivity of rock properties inAVO analysis and prospect evaluation. SEG Expanded Abstracts 19 (1): 186-189. http://dx.doi.org/10.1190/1.1815794.
Murphy, W., Reisher, A., and Hsu, K. 1993. Modulus decomposition ofcompressional and shear velocities in sand bodies. Geophysics 58 (2): 227-239. http://dx.doi.org/10.1190/1.1443408.
Park, H.-J., West, T.R., and Woo, I. 2005. Probabilistic analysis of rockslope stability and random properties of discontinuity parameters, InterstateHighway 40, Western North Carolina, USA. Eng. Geol. 79(3-4): 230-250. http://dx.doi.org/10.1016/j.enggeo.2005.02.001.
Pickett, G.R. 1963. Acoustic Character Logs and Their Applications inFormation Evaluation. J Pet Technol 15 (6): 659-667.SPE-452-PA. http://dx.doi.org/10.2118/452-PA.
Potter, C.C. and Foltinek, D.S. 1997. Formation elastic parameters byderiving S-wave velocity logs. Research Report, Vol. 9, Chap. 10, CREWES,Department of Geoscience, University of Alberta, Calgary, Alberta (December1997). http://www.crewes.org/ForOurSponsors/ResearchReports/1997/1997-10.pdf.
Prioul, R., Bakulin, A., and Bakulin, V. 2004. Nonlinear rock physics modelfor estimation of 3D subsurface stress in anisotropic formations: Theory andlaboratory verification. Geophysics 69 (2): 415-425. http://dx.doi.org/10.1190/1.1707061.
Rajabi, M., Bohloli, B., and Gholampour Ahangar, E. 2010. Intelligentapproaches for prediction of compressional, shear and Stoneley wave velocitiesfrom conventional well log data: A case study from the Sarvak carbonatereservoir in the Abadan Plain (Southwestern Iran). Comput. Geosci.36 (5): 647-664. http://dx.doi.org/10.1016/j.cageo.2009.09.008.
Reilly, J.M. 1994. Wireline shear and AVO modeling: Application to AVOinvestigations of the Tertiary, U.K. Central North Sea. Geophysics 59 (8): 1249-1260. http://dx.doi.org/10.1190/1.1443682.
Rezaee, M.R., Kadkhodaie Ilkhchi, A., and Barabadi, A. 2007. Prediction ofshear wave velocity from petrophysical data utilizing intelligent systems: Anexample from a sandstone reservoir of Carnarvon Basin, Australia. J. Pet.Sci. Eng. 55 (3-4): 201-212. http://dx.doi.org/10.1016/j.petrol.2006.08.008.
Roesler, S.K. 1979. Anisotropic Shear Modulus due to Stress Anisotropy.Journal of the Geotechnical Engineering Division (ASCE) 105(7): 871-880.
Røgen, B., Gommesen, L., and Fabricius, I.L. 2004. Methods of velocityprediction tested for North Sea chalk: a review of fluid substitution and vSestimates. J. Pet. Sci. Eng. 45 (1-2): 129-139. http://dx.doi.org/10.1016/j.petrol.2004.04.003.
Rubinstein, R.Y. and Kroese, D.P. 2008. Simulation and the Monte CarloMethod, second edition. Hoboken, New Jersey: Wiley Series in Probabilityand Statistics, John Wiley & Sons.
Sari, M. 2009. The stochastic assessment of strength and deformabilitycharacteristics for a pyroclastic rock mass. Int. J. Rock Mech. Min.Sci. 46 (3): 613-626. http://dx.doi.org/10.1016/j.ijrmms.2008.07.007.
Sari, M., Karpuz, C., and Ayday, C. 2010. Estimating rock mass propertiesusing Monte Carlo simulation: Ankara andesites. Comput. Geosci. 36 (7): 959-969. http://dx.doi.org/10.1016/j.cageo.2010.02.001.
Sarkar, D., Bakulin, A., and Kranz, R.L. 2003. Anisotropic inversion ofseismic data for stressed media: Theory and a physical modeling study on BereaSandstone. Geophysics 68 (2): 690-704. http://dx.doi.org/10.1190/1.1567240.
Zoback, M.D. and Healy, J. 1984. Friction, faulting and in-situ stress.Ann. Geophys. 2: 689-698.