Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Successful Applications of Pressure-Rate Deconvolution in the Cad-Nik Tight Gas Formations of the British Columbia Foothills

Authors
Jack R. Jones (BP Canada Energy Company) | Andrew Chen (BP Canada Energy Company)
DOI
https://doi.org/10.2118/143710-PA
Document ID
SPE-143710-PA
Publisher
Society of Petroleum Engineers
Source
Journal of Canadian Petroleum Technology
Volume
51
Issue
03
Publication Date
May 2012
Document Type
Journal Paper
Pages
176 - 192
Language
English
ISSN
0021-9487
Copyright
2012. Society of Petroleum Engineers
Disciplines
5.1.1 Exploration, Development, Structural Geology, 5.1.2 Faults and Fracture Characterisation, 5.8.1 Tight Gas, 1.6 Drilling Operations
Keywords
pressure transient analysis, tight gas, deconvolution, naturally fractured reservoirs
Downloads
2 in the last 30 days
376 since 2007
Show more detail
View rights & permissions
SPE Member Price: USD 12.00
SPE Non-Member Price: USD 35.00

Summary

The Cadomin-Nikanassin (Cad-Nik) sandstone formations in the Lower Cretaceous reservoirs along the reverse-thrust faulting belt of northeastern British Columbia (NEBC), Canada, have emerged in recent years as a new tight gas play. The low porosity (3?6%) of the rock matrix controls gas storativity, while the presence of natural fractures in the form of clusters or swarms allows significant and sustainable flow rates for commercial production. Newly drilled wells are commonly hydraulically fractured to establish or enhance wellbore connectivity to the natural-fracture network.

Seismic mappings of these structural unconventional-gas reservoirs provide the early assessments of resource sizes and initial gas in place (IGIP), which usually bear large uncertainties because of the difficulty in determining reservoir structural closures and pay-porosity cutoffs. Regional analogue wells are often used to guide development decisions. Meanwhile, estimating connected reservoir volumes through conventional-gas material balances (p/z vs. cumulative production) and production-data analysis [rate-transient analysis (RTA)] has not been without challenges. Fairly long pressure buildups (PBUs), on the order of hundreds of hours, are often performed without seeing the pressure stabilization required to estimate accurately the reservoir pressure needed for material-balance calculations. The applicability of pressure extrapolation to these tests has not been systematically investigated; therefore, no reliable methods for using shorter shut-ins to estimate reservoir pressure currently exist. Thus, reliable average reservoir-pressure estimates require significantly longer well shut-in times in order to perform meaningful gas material balance. Because this is not practical, confidence in material-balance results requires a second, independent method for establishing connected well volumes to be used in comparisons and cross checking. One possible choice is RTA, but, in these fields, numerous times wellhead-pressure data are also unavailable or unreliable.

This paper presents two field-case studies that demonstrate the successful application of the pressure/rate-deconvolution approach, combining a well?s long, high-quality production-rate history with accurate downhole-pressure data from relatively short buildup tests. This approach allows the reservoir engineer to (1) reconcile the performance-based estimated-ultimate-recovery estimates with the volumetric IGIPs; (2) establish, at the least, minimum well-drainage size and connected volume; and (3) select possible infill-drilling opportunities. A final benefit is that this often leads to a better understanding of well/reservoir parameters.

File Size  6 MBNumber of Pages   17

References

Chen, A. and Jones, J.R. 2011. Use of Pressure-Rate Deconvolution toEstimate Connected Reservoir Drainage Volume in Naturally FracturedUnconventional Gas Reservoirs from Canadian Rockies Foothills. Paper SPE 143016presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna,Austria, 23-26 May. http://dx.doi.org/10.2118/143016-MS.

Levitan, M.M. 2005. Practical Application of Pressure/Rate Deconvolution toAnalysis of Real Well Tests. SPE Res Eval & Eng  8 (2):113-121. SPE-84290-PA. http://dx.doi.org/10.2118/84290-PA.

Levitan, M.M. and Wilson, M.R. 2010. Deconvolution of Pressure and Rate DataFrom Gas Reservoirs With Significant Pressure Depletion. Paper SPE 134261presented at the SPE Annual Technical Conference and Exhibition, Florence,Italy, 19-22 September. http://dx.doi.org/10.2118/134261-MS.

Levitan, M.M., Crawford, G.E., and  Hardwick, A. 2006. PracticalConsiderations for Pressure-Rate Deconvolution of Well-Test Data. SPE J. 11 (1): 35-47. SPE-90680-PA. http://dx.doi.org/10.2118/90680-PA.

Todorovic-Marinic, D., Larsen, G., Gray, D., Cheadle, S., Soule, G.,and  Zheng, Y. 2004. Identifying vertical productive fractures in theNarraway gas field using the envelope of the anisotropic gradient. FirstBreak  23 (October): 45-50.

    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 11/12
    • Issue 9/10
    • Issue 7/8
    • Issue 7
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 13
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
Show more

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in