Extraction of Dissolved Methane in Brines by CO2 Injection: Implication for CO2 Sequestration
- Authors
- Ian J. Taggart (Consultant)
- DOI
- https://doi.org/10.2118/124630-PA
- Document ID
- SPE-124630-PA
- Publisher
- Society of Petroleum Engineers
- Source
- SPE Reservoir Evaluation & Engineering
- Volume
- 13
- Issue
- 05
- Publication Date
- October 2010
- Document Type
- Journal Paper
- Pages
- 791 - 804
- Language
- English
- ISSN
- 1094-6470
- Copyright
- 2010. Society of Petroleum Engineers
- Disciplines
- 4.6 Natural Gas, 5.4.2 Gas Injection Methods, 5.10.1 CO2 Capture and Sequestration, 5.4 Enhanced Recovery
- Keywords
- Geosequestration, brine, Dissolved methane, CO2
- Downloads
- 3 in the last 30 days
- 847 since 2007
- Show more detail
- View rights & permissions
SPE Member Price: | USD 12.00 |
SPE Non-Member Price: | USD 35.00 |
Summary
The solubility of carbon dioxide (CO2) in underground saline formations is considered to offer significant long-term storage capability to effectively sequester large amounts of anthropogenic CO2. Unlike enhanced oil recovery (EOR), geosequestration relies on longer time scales and involves significantly greater volumes of CO2. Many geosequestration studies assume that the initial brine state is one containing no dissolved hydrocarbons and, therefore, apply simplistic two-component solubility models starting from a zero dissolved-gas state. Many brine formations near hydrocarbons, however, tend to be close to saturation by methane (CH4). The introduction of excess CO2 in such systems results in an extraction of the CH4 into the CO2-rich phase, which, in turn, has implications for monitoring of any sequestration project and offers the possibly additional CH4 mobilization and recovery.
File Size | 1 MB | Number of Pages | 14 |
References
Aklbayashi, S. and Zhou, P. 1988. The Production Performance of theWater-Dissolved Natural Gas Reservoir. Paper SPE 17681 presented at theOffshore South East Asia Show, Singapore, 2-5 February. doi:10.2118/17681-MS.
Bachu, S. and Bennion, B. 2007. Differential Arrival Time of CO2 andAssociated Impurities Injected in the Subsurface. Poster presentation at the6th Annual Conference on Carbon Sequestration, Pittsburgh, Pennsylvania, USA,7-10 May.
Bassiouni, Z. 1980. Evaluation of Potential Geopressure Geothermal TestSites in Southern Louisiana. Technical Report No. DOE/ET/28465-T1, DOE ContractNo. DE-AS05-76ET28465, Louisiana State University, Baton Rouge, Louisiana, USA(01 April 1980).
Brantjes, J. 2008. Formation Evaluation for CO2 Disposal. Presented at theAnnual SPWLA Logging Symposium, Edinburgh, Scotland, 25-28 May.
Carroll, J.J. 1992. Use Henry's Law for Multicomponent Mixtures. ChemicalEngineering Progress 88 (8): 53-58.
Doherty, M.G., Randolph, P.L., Rogers, L.A., and Poonawala, N.A. 1982. Methane Production From GeopressuredAquifers. J Pet Technol 34 (7): 1591-1599. SPE-9468-PA.doi: 10.2118/9468-PA.
Doscher, T.M. and Azari, M. 1982. Numerical Simulation of the Effect ofCritical Gas Saturation and Other Parameters on the Productivity of MethaneFrom Geopressured Aquifers. J Pet Technol 34 (8):1880-1886. SPE-8891-PA. doi: 10.2118/8891-PA.
Duan, Z. and Mao, S. 2006. A thermodynamic model forcalculating methane solubility, density and gas phase composition ofmethane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar.Geochimica et Cosmochimica Acta 70 (13): 3369-3386.doi:10.1016/j.gca.2006.03.018.
Duan, Z.H. and Sun, R. 2003. An improved model calculating CO2 solubility inpure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar.Chem. Geol. 193 (3-4): 257-271.
ECLIPSE 300 Compositional and Thermal Reservoir Simulator. 2000.Schlumberger, http://www.slb.com/services/software/reseng/compositional.aspx.
FlowPhase Engineering Software. AQUAlibrium (Version 2.0j), http://www.flowphase.com/aqualibrium.html.
Gilfillan, S.M.V., Lollar, B.S., Holland, G., Blagburn, D., Stevens, S.,Schoell, M., Cassidy, M., Zhenju Ding, Z., Zhou, Z., Lacrampe-Couloume, G., andBallentine, C.J. 2009. Solubility trapping in formationwater as dominant CO2 sink in natural gas fields. Nature 458 (2 April 2009): 614-618. doi:10.1038/nature07852.
Griggs, J. 2005. A Reevaluation of Geopressured-Geothermal Aquifers as anEnergy Source. Proc., 30th Workshop of Geothermal Reservoir Engineering,Stanford University, Stanford, California, 31 January-2 February, PaperSGP-TR-176.
Hangx, S.J.T. 2005. Behavior of the CO2-H2O system and preliminarymineralisation model and experiments. CATO Workpackage WP 4.1, Deliverable WP4.1-3-05, 1-43.
Helfferich, F.G. 1981. Theory ofMulticomponent, Multiphase Displacement in Porous Media. SPE J. 21 (1): 51-62. SPE-8372-PA. doi: 10.2118/8372-PA.
Hovorka, S.D., Collins, D., Benson, S., and Myer, L. 2005. Update on theFrio Brine Pilot: Eight months after injection, http://www.cslforum.org/publications/documents/FrioProject.pdf.
Isokrari, O.F. 1976. Natural GasProduction from Geothermal Geopressured Aquifers. Paper SPE 6037 presentedat the SPE Ann Fall Technical Conference and Exhibition, New Orleans, 3-6October. doi: 10.2118/6037-MS.
Li, Y.-K. and Nghiem, L.X. 1986. Phase Equilibria of Oil, Gasand Water/Brine Mixtures from a Cubic Equation of State and Henry's Law.Can. J. Chem. Eng 64 (3): 486-496. doi:10.1002/cjce.5450640319.
Littke, R., Cramer, B., Gerline, P., Lopatin, N.V., Poelchau, H.S.,Schaefer, R.G., and Welte, D.H. 1999. Gas generation and accumulation in theWest Siberian Basin. AAPG Bulletin 83 (10): 1642-1665.
Malek, R. 2005. Western Australia's Regional Aquifer Depletion Studies.Petroleum in Western Australia (April 2005): 26-31. http://www.dmp.wa.gov.au/documents/PWA_April_2005.pdf.
Mallison, B.T., Gerritsen, M.G., Jessen, K., and Orr, F.M. Jr. 2003. High Order Upwind Schemes forTwo-Phase, Multicomponent Flow. SPE J. 10 (3): 297-311.SPE-79691-PA. doi: 10.2118/79691-PA.
Manrique, J.F. and Kanecki, T. 2000. Reservoir Management Strategies forDevelopment of Gas Dissolved in Water (Brine) Reservoirs. Paper SPE 59420presented at the SPE Asia Pacific Conference on Integrated Modelling for AssetManagement, Yokohama, Japan, 25-28 April. doi: 10.2118/59420-MS.
Marsden, S.S. Jr. 1979. NaturalGas Dissolved in Brine--A Major Energy Source of Japan. 1979. Paper SPE8355 presented at the SPE Annual Technical Conference and Exhibition, LasVegas, 23-26 September. doi: 10.2118/8355-MS.
McCain, W.D. Jr. 1990. The Properties of Petroleum Fluids, secondedition. Tulsa, Oklahoma: PennWell Publishing Company.
NETL. 2007. Carbon Sequestration Atlas of the United States and Canada, 88,http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlas/ATLAS.pdf.
Qin, J., Rosenbauer, R.J., and Duan, Z. 2008. Experimental Measurements ofVapor-Liquid Equilibria of the H2O+CO2+CH4 Ternary System. J. Chem. Eng.Data 53 (6): 1246-1249. doi:10.1021/je700473e.
Sharma, S. and Cook, P. 2008. Demonstrating geosequestration of carbondioxide in Australia: the CO2CRC Otway Project. World Coal Magazine 16 (12): 49-53.
Soreide, I. and Whitson, C.H. 1992. Peng Robinson predictionsfor hydrocarbons, CO2, N2 and H2S with pure water and NaCl brine. FluidPhase Equilibria 77 (15 September 1992): 217-240.doi:10.1016/0378-3812(92)85105-H.
WinProp software, Version 2007.10. 2007. Calgary, Alberta: ComputerModelling Group (CMG).