Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

The Continuous Spilling of Hot Oil on Ice

Authors
Sidney K. Siu (University of Toronto) | Colin R. Phillips (University of Toronto) | E. C. Chen (Canada Centre for Inland Waters, Environment Canada)
DOI
https://doi.org/10.2118/77-01-01
Document ID
PETSOC-77-01-01
Publisher
Petroleum Society of Canada
Source
Journal of Canadian Petroleum Technology
Volume
16
Issue
01
Publication Date
January 1977
Document Type
Journal Paper
Language
English
ISSN
0021-9487
Copyright
1977. Petroleum Society of Canada
Disciplines
6.5.2 Water use, produced water discharge and disposal, 4.2 Pipelines, Flowlines and Risers, 6.5.5 Oil and Chemical Spills, 4.3.4 Scale
Keywords
Downloads
0 in the last 30 days
57 since 2007
Show more detail
View rights & permissions
SPE Member Price: USD 12.00
SPE Non-Member Price: USD 35.00
Abstract

The continuous spilling of hot Norman Wells crude oil onto an ice surface was investigated with oil temperature, ice temperature and spilling rate as parameters. An equation for spreading of the oil was developed in whick the oil slick area, A, was proportional to t (1,2), where t is the elapsed time. Experimental data showed that A was prow portional to t 0.8. Increases in both oil and ice temperatures were found to cause an increase in A, and temperature effects could be taken into account by relating kinematic viscosity to a function of the geometric mean of the ice and oil temperatures.

Introduction

ALTHOUGH the spreading of hot oil on ice is of interest from the point of view of oil spills in Arctic regions, no controlled quantitative study taking several variables into account. has been published. In previous work, Chen et al. (1) studied the instantaneous release of oil under controlled isothermal conditions, and Glaeser(2) and McMinn (3) carried out non-isothermal field tests under a single experimental condition. The present work concerns the continuous spilling of hot crude oil on ice at ice temperatures down to -40 °C and oil temperatures up to 60 °C. Continuous spilling would occur in the event of a pipeline leak. The oil and ice temperatures chosen cover likely pipeline conditions during the Arctic winter. In common with the previous work (1), crude oil from commercial production at Norman Wells, Northwest Territories, Canada, was used. Mackay, Charles and Phillips'" have discussed other aspects of the physical behaviour of crude oil in Arctic environments, with particular reference to Norman Wells crude oil and the Mackenzie Valley of the Northwest Territories.

Theoretical Background

It has been recognized (1-3, 5-7) that the spreading of a liquid over a solid surface passes through three distinct regions: gravity-inertia, gravity-viscous and surface tension-viscous. However, in continuous spreading, the gravity-viscous region is of primary importance because surface-tension spreading is not likely to occur due to the continuous flow, and the gravity-inertia spreading, which occurs only in the area around the point of deposition, will not be observed.

Using the same argument as that used by Chen et al. (1), the gravitational outward pressure force per unit volume is

(Equation Available In Full Paper)

In application of this model to the non-isothermal case of spreading of hot oil on ice, it should be noted that µ (or Ï…) must represent an effective viscosity, as there is a temperature gradient across the spreading oil film; any correlation of data in terms of equation (5) will therefore be in terms of such an effective viscosity. This notion is further reinforced by the observation that the spreading of hot oil on ice must of necessity involve flow of oil over a water film formed from the ice at the interface with the hot oil.
File Size  413 KBNumber of Pages   4
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 11/12
    • Issue 9/10
    • Issue 7/8
    • Issue 7
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 13
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 12
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 11
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 10
    • Issue 09
    • Issue 08
    • Issue 07
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
Show more

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in