ABSTRACT:

Socket resistance contributes significantly to pile capacity. In the present work, an approach is presented for estimating the capacity of side-resistance-only piles socketed in rock by considering the effect of interlocking in terms of JRC and Fractal Dimension. Unlike available methods of quantification of roughness of surfaces, Fractal geometry allows the description of irregular shapes. A correlation is established between JRC and Fractal Dimension (D). This is used to estimate socket contribution and predict pile capacity based on an iterative procedure. Here the axial load is calculated by incrementing vertical displacement along the interface and estimating the shear strength mobilised at the interface using above correlation. Pile socket data reported in literature is used for validating the approach. The study is then extended to piles socketed in weathered rock in Mumbai region. The results show that it is feasible to make a reliable estimate of the socket strength contribution.

RESUME:

La contribution du resistance de socket dans le capaciti' de pile est significanti. Une approche est presenti' pour estimer la capaciti' du resistance des piles launce' dans les roches en consideliant la effect de interlocakge en terme de JRC et dimension fractal. Par a port des methodes disponibles pour quantifier du rugueux de surfaces de geometry fractal permet de de'crire surface irregulies. Une co-relation entre JRC et la dimension fractal est etabli. La co-relation est utilize' pour estimer la contribution du socket et pre'dix de capaciti du pile basi sur procedi' iterative. La force axiale est calcule' par incrementation en displacement verticale au le longue de unterface et en estimation de resistance an cisaillement mobilise' an interface en utilisent du co-relation. Pour validation du approche les donne's disponible dans la literature sur socket en pile sont utilise's. La L'etude aussi elabore sur des sockets en piles dans les roches du region de Mumbai. Les resultats montres que des estimation sur contribution de socket to nacite' sant fre's faisables.

ZUSAMMENFASSUNG:

Die Sockelwiderstand tr a gt zur Pfahlkapazit at recht bedeutsam bei. In dieser Arbeit, wird, zur Bestimmung der kapazit a t der Pf a hle, die in Gesteinsockel nur durch Seitenwiderstand stehn, ein Verfahren dargestellt, die sich auf des JRC-bedingten Verbl ö ckungseffekt und der Fractaldimension bezieht. Im Gegensatz zur bekannten Methoden zur Bestimmung der Fl a chenrauheit, die Fractalgeometrie erm ö glicht die Darstellung von irregul a re Umrissen. Hier wird, zwischender JRC und der Fractaldimension (D), ein Zusarnmenhang hergestellt. Dieser wird, mit Anwendung einer iterativen Verfahren, da zu gebraucht, um Die Sockelbeitrag zu bestmmen, und die Pfahlkapazit a t zu sch a tzen. Die erw a hnte Zusammenhang wird da zu genutzt, durch Vergr ö sserung der Vertikalverschiebung entlang der Ber ue hungsfl a che, und Bestimmung der dadurch entstandene Schubkraft an dieser Fl a che, die Axillast zu berechnen. Ver ö fentlichte Daten uber Pfahlensockeln wurden da zu gebraucht um die Ergebnisse dieser Verfahren zu best a tigen. Die untersuchung wurde dann zur Pf a hle, die um Mumbai in verwitterten Gestein eingesockelt sind, ausgedehnt. Das Resultat weisst daraufhin, dass die Beitr a ge der Sockelst a rke zuverl a ssig zu sch a tzen sind.

1
INTRODUCTION

Shear strength of rock joints is a topic which has attracted Considerable attention in the last three decades. Several attempts have been made for the estimation of shear strength in terms of surface parameters of joints.

Barton and Choubey (1977) introduced the joint roughness coefficient (JRC) as a parameter to take into account the roughness of rock surfaces. However, the method for estimating the JRC value of a measured roughness profile is subjective in that the user must judge where his profile fits within the range of ten standard profiles of increasing roughness. Further, JRC characterizes surface roughness along linear profiles or in one dimension. But since joint planes are two dimensional, quantification of surface roughness in two dimensional plane is required. Moreover, investigations have shown that JRC values are scale dependent.

Recently, the concept of fractal geometry has been suggested as an alternative method of describing and quantifying the conditions of joint surface, in particular the degree of joint roughness. Fractal geometry may allow the description of irregular shapes which are more complex than the Euclidean geometric forms such as spheres, cylinders, planes etc.

This content is only available via PDF.
You can access this article if you purchase or spend a download.