In this paper numerical simulation of jointed block mass behaviour obtained in an experimental study has been presented. Singh et al. (2002) conducted extensive tests on the jointed model materials with several joint configurations. The results of this experimental study were used to validate the strength behaviour of numerical block mass model developed using professionally available software. This software basically contains different kinds of material models. From the results of numerical simulation the existence of strength anisotropy was observed. The strength anisotropy so obtained has been compared with the experimental values reported by Singh et al. (2002). The anisotropic curves in both cases are U-shaped with flat base. They show good agreement in sliding mode of failure zone in which inclination β (= 90° - θ) of joint set-I lie between 20° to 40° for all cases of interlocking.
In dieser numerischen Papiersimulation des verbundenen Blockmasse Verhaltens, das in einer experimentellen Studie erhalten wird, ist dargestellt worden. Singh et al. (2002) leiteten umfangreiche Tests auf den verbundenen vorbildlichen Materialien mit einigen gemeinsamen Konfigurationen. Die Resultate dieser experimentellen Studie wurden verwendet, um das Starke Verhalten des numerischen Blockmasse Modells zu validieren, das mit professionell vorhandener Software entwickelt wurde. Diese Software enthalt im Allgemeinen unterschiedliche Arten der materiellen Modelle. Von den Resultaten der numerischen Simulation wurde das Bestehen von Starke Anisotrophie beobachtet. Die Starke Anisotrophie also erreicht ist mit den experimentellen Werten verglichen worden, die von Singh et al. (2002) berichtet werden. Die anisotropen Kurven in beiden Fallen sind mit flacher Unterseite uförmig. Sie zeigen gute Vereinbarung in gleitender Erscheinungsform des Ausfalls Zone, in der Neigung β (= 90° - θ) von der Verbindung stellenSie Luege zwischen 20° auf 40° fuer alle Falle vom Ineinandergreifen ein.
Dans cette simulation numerique de papier du comportement joint de la masse de bloc obtenu en etude experimentale a ete presente. Singh et autres (2002) ont effectue les essais etendus sur les materiaux modèles joints avec plusieurs configurations communes. Les resultats de cette etude experimentale ont ete employes pour valider le comportement de resistance du modèle numerique de la masse de bloc developpe en utilisant le logiciel professionnellement disponible. Ce logiciel contient fondamentalement differents genres de modèles materiels. Des resultats de la simulation numerique on a observe l'existence de l'anisotropie de force. L'anisotropie de force ainsi obtenu a ete comparee aux valeurs experimentales rapportees par Singh et autres (2002). Les courbes anisotropes dans les deux cas sont en U avec la base plate. Elles montrent la bonne concordance dans le mode coulissant de la zone d'echec en lequel la inclination β (= 90° - θ) du joint placez-Je le mensonge entre 20° à 40° pour tous les cas d'enclencher.
Usually, the rock mass is composed of discontinuities like bedding planes, joints, faults, shear planes etc. The failure of rock mass is governed by sliding along joint or rotation of block element. The physical model study is a very reliable method to understand the failure mechanism of jointed rocks. In the past such studies have been conducted by Ladanyi and Archambault (1972), Ramamurthy and Arora (1994), Singh et al. (2002). Results of their studies show that the material fails due to different failure modes and this is attributed to complex internal stress distribution. Large scale experimental and field studies are impractical to carry out and are very expensive. In such situations numerical methods are the best option (Jing and Hudson, 2002). Numerical studies on such models can be performed and the predicted results can be validated with few laboratory test results. Once a numerical model is validated, it can be used for predicting engineering behaviour of several varieties of rocks in different site conditions.
Rao et al. (2002) applied jointed rock model (Plaxis -3D) to analyse excavation induced stresses and deformations in Österfeld tunnel, Stuttgart - Vaihingen, Germany and compared with insitu-measured deformations at tunnel faces.