Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Time-Lapse Seismic Monitoring of Individual Hydraulic Frac Stages Using a Downhole Distributed Acoustic Sensing Array

Authors
Gary Binder (Colorado School of Mines) | Aleksei Titov (Colorado School of Mines) | Diana Tamayo (Colorado School of Mines) | James Simmons (Colorado School of Mines) | Ali Tura (Colorado School of Mines) | Grant Byerley (Apache Corporation) | David Monk (Apache Corporation)
DOI
https://doi.org/10.15530/urtec-2019-409
Document ID
URTEC-2019-409-MS
Publisher
Unconventional Resources Technology Conference
Source
SPE/AAPG/SEG Unconventional Resources Technology Conference, 22-24 July, Denver, Colorado, USA
Publication Date
2019
Document Type
Conference Paper
Language
English
Copyright
2019. Unconventional Resources Technology Conference
Downloads
12 in the last 30 days
107 since 2007
Show more detail
SPE Member Price: USD 9.50
SPE Non-Member Price: USD 28.00

Abstract

In 2017, distributed acoustic sensing (DAS) technology was deployed in a horizontal well to conduct a time-lapse vertical seismic profiling (VSP) survey before and after each of 78 hydraulic fracturing stages. The goal of the survey was to more continuously monitor the evolution of stimulated rock throughout the treatment of the well. From two vibroseis source locations at the surface, time shifts of P-waves were observed along the well that decayed almost completely by the end of the treatment. A shadowing effect in the time shifts was observed that enables the height of the stimulated rock volume to be estimated. Using full wavefield modeling, the distribution of time shifts is well described by an equivalent medium model of vertical fractures that close as pressure declines due to fluid leak-off. Converted P to S waves were also observed to scatter off stimulated rock near some stages as confirmed with full wavefield modeling. The signal-to-noise ratio is a limitation of the current dataset, but recent improvements in DAS technology can enable stage-by-stage monitoring of the stimulated rock height, fracture compliance, and decay time as a well is completed.

Introduction

Distributed Acoustic Sensing (DAS) has opened new possibilities for seismic monitoring of unconventional reservoirs. Using a laser interrogator to launch light pulses down a fiber optic cable, dynamic strain changes can be sampled along the cable from the phase shift of light backscattered to the interrogator (Hartog, 2017). Since the fiber optic cable can be permanently cemented outside the casing in a borehole, highly repeatable vertical seismic profiling (VSP) surveys can be acquired frequently without costly wireline geophone deployments that interfere with well treatment activities (Mateeva et al., 2017; Meek et al., 2017).

As described by Byerley et al., 2018, a unique interstage DAS VSP survey was conducted in 2017 during the stimulation of a horizontal well targeting the Wolfcamp formation in the Midland Basin, Texas. Using two vibroseis source locations offset about 1 mile from the heel and toe of the well, DAS data was acquired in the treatment well before and after each of 78 hydraulic fracturing stages. At the expense of fewer source locations, this type of acquisition allows the evolution of the stimulated rock volume (SRV) to be monitored on a stage-by-stage basis as the well is treated.

File Size  1 MBNumber of Pages   12

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in