Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Domain Transfer Analysis - A Robust New Method for Petrophysical Analysis

Authors
Ravi Arkalgud (Helio Flare Limited) | Andrew McDonald (Lloyd's Register) | Derek Crombie (Lloyd's Register)
Document ID
SPWLA-2019-HHHH
Publisher
Society of Petrophysicists and Well-Log Analysts
Source
SPWLA 60th Annual Logging Symposium, 15-19 June, The Woodlands, Texas, USA
Publication Date
2019
Document Type
Conference Paper
Language
English
Copyright
2019. held jointly by the Society of Petrophysicists and Well Log Analysts (SPWLA) and the submitting authors
Disciplines
Keywords
Downloads
5 in the last 30 days
132 since 2007
Show more detail
Price: USD 10.00

ABSTRACT

Today, many machine learning techniques are regularly employed in petrophysical modelling such as cluster analysis, neural networks, fuzzy logic, self-organising maps, genetic algorithm, principal component analysis etc. While each of these methods has its strengths and weaknesses, one of the challenges to most of the existing techniques is how to best handle the variety of dynamic ranges present in petrophysical input data. Mixing input data with logarithmic variation (such as resistivity) and linear variation (such as gamma ray) while effectively balancing the weight of each variable can be particularly difficult to manage.

A novel method - Domain Transfer Analysis (DTA) - has been developed which uses a non-linear partial differential equation solver for predicting log curves, enabling more effective integration of disparate data types. DTA is conceived based on extensive research conducted in the field of CFD (Computational Fluid Dynamics).

This paper is focused on the application of DTA to petrophysics and its fundamental distinction from various other statistical methods adopted in the industry. Case studies are shown, predicting porosity and permeability for a variety of scenarios using the DTA method and other techniques. The results from the various methods are compared, and the robustness of DTA is illustrated. The example datasets are drawn from public databases within the Norwegian and Dutch sectors of the North Sea, and Western Australia, some of which have a rich set of input data including logs, core, and reservoir characterisation from which to build a model, while others have relatively sparse data available allowing for an analysis of the effectiveness of the method when both rich and poor training data are available.

The paper concludes with recommendations on the best way to use DTA in real-time to predict porosity and permeability. The future and ongoing applications of DTA for petrophysical analysis encompasses saturation, TOC, mineral volumes, and brittleness from the data that are available at varying stages of the drilling and completions process.

File Size  2 MBNumber of Pages   24

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in