Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

A New Apparatus for Coupled Low-Field NMR and Ultrasonic Measurements in Rocks at Reservoir Conditions

Authors
Paul R. J. Connolly (The University of Western Australia) | Joël Sarout (CSIRO Energy) | Jérémie Dautriat (CSIRO Energy) | Eric F. May (The University of Western Australia) | Michael L. Johns (The University of Western Australia)
Document ID
SPWLA-2019-B
Publisher
Society of Petrophysicists and Well-Log Analysts
Source
SPWLA 60th Annual Logging Symposium, 15-19 June, The Woodlands, Texas, USA
Publication Date
2019
Document Type
Conference Paper
Language
English
Copyright
2019. held jointly by the Society of Petrophysicists and Well Log Analysts (SPWLA) and the submitting authors
Disciplines
Keywords
Downloads
9 in the last 30 days
181 since 2007
Show more detail
Price: USD 10.00

ABSTRACT

Models which describe the effect of pore fluids on elastic wave propagation in rocks are the basis for quantitative reservoir analysis. Laboratory ultrasonic measurements conducted on rock cores are used to develop and tune these models, which requires inputs such as fluid saturation and distribution, pore aspect ratio, wettability and fluid viscosity. Hydrogen (1H) Nuclear magnetic resonance (NMR) is a technique that can be used to quantitatively describe some of these important parameters. Here we report on the design, construction and performance of a novel NMR-compatible rock core holder system allowing for the measurement of both ultrasonic P-wave velocities and NMR relaxation parameters in rock cores at reservoir pressure. Successful validation against a conventional benchtop ultrasonic measurement system was performed, whilst sequential NMR and ultrasonic measurements were demonstrated on a sandstone rock core at reservoir pressure as a function of variable brine/supercritical CO2 saturation. This new apparatus represents the first coupled NMR and ultrasonic measurements of rocks at high temperature and pressure, and allows for a new approach to study pore scale saturation effects on elastic wave propagation in rocks.

INTRODUCTION

Low field Hydrogen (1H) Nuclear Magnetic Resonance (NMR) is an important tool in petro-physics and is readily used to determine important reservoir parameters such as porosity, permeability, fluid type and saturation. Measurements are made both in situ in reservoirs using well logging tools, and ex situ on recovered reservoir plugs using benchtop spectrometers (Dunn et al. 2002). For quantitative assessment, low-field NMR employing magnetic field strengths less than 0.5 T have been shown to be more robust than higher fields as the impacts of internal magnetic field gradients are minimized (Straley et al. 1997; Mitchell et al. 2010a). Furthermore, due to the technological challenge of operating well logging tools on long wire lines in harsh reservoir conditions, only low magnetic fields (e.g. ∼<0.1T) are currently attainable (Mitchell & Fordham 2014).

File Size  1 MBNumber of Pages   9

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in