Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Deployment of Pressure Hit Catalogues to Optimize Multi-Stage Hydraulic Stimulation Treatments and Future Re-Fracturing Designs of Horizontal Wells in Horn River Shale Basin

Authors
Alireza Rangriz Shokri (University of Alberta) | Rick J. Chalaturnyk (University of Alberta) | Doug Bearinger (CNOOC International)
DOI
https://doi.org/10.2118/196221-MS
Document ID
SPE-196221-MS
Publisher
Society of Petroleum Engineers
Source
SPE Annual Technical Conference and Exhibition, 30 September - 2 October, Calgary, Alberta, Canada
Publication Date
2019
Document Type
Conference Paper
Language
English
ISBN
978-1-61399-663-8
Copyright
2019. Society of Petroleum Engineers
Keywords
Stimulated Fractures, Shale Basin, Hydrualic Fracturing, Well Interference, Pressure Hit
Downloads
81 in the last 30 days
703 since 2007
Show more detail
View rights & permissions
SPE Member Price: USD 9.50
SPE Non-Member Price: USD 28.00
Abstract

Continuous monitoring of wellhead pressures, captured from passive wellbores on a multi-well pad during fracturing operation, has been used as a cost efficient diagnostic tool to better characterize stimulated fracture network and reservoir drainage in Horn River Shale Basin. This paper aims to generate pressure hit catalogues and to quantify their effectiveness to deliver real-time on-site improvement in completion treatments, parent/child interactions, and re-fracturing designs.

Pressure data of a multi-well pad was initially analyzed to establish measurable attributes for identification of hydro-mechanic responses from direct hydraulic communications. A fully-coupled hydro-mechanical code, with explicit inclusion of discontinuities, explored the interaction mechanisms across natural and induced fractures by reproducing observed pressures of passive wells. Employing multivariate experimental design on a subset of pressure data, pressure hit catalogues were generated with notion to the sensitivity of hydro-mechanical properties of fracture/intact rock, geometrical/statistical properties of fracture network, in-situ stresses, and completion design. Using the unexploited subset of pressure data, the practicality of pressure catalogues was verified against coupled simulations.

The pre-processing of pressure data, to assign attributes to pressure hits, was found essential for analysis of interference mechanisms during fracture treatments prior to incorporating the data into a coupled simulation. Explicit modeling of discrete fractures allowed to evaluate how key sensitive parameters, mainly fracture/intact rock properties, and altered stress environment due to continuous multi-stage fracturing operation, could affect passive pressure signature. Using a subset of pressure hit data obtained from a multi-well pad in Horn River Shale Basin, the calibrated coupled simulations helped to constrain the statistical complexity of fracture network realizations, which ultimately observed to closely align with available microseismic data. The efforts went into the calibration of pressure/stress shadows, using wellhead pressure data at subsequent stages, were summarized. Given the model size and dealing with too large data sets, history-matching of individual pressure hits proved to be computationally intensive. The steps to generate and employ pressure hit catalogues were also illustrated. The results obtained from application of pressure catalogues on the unexploited subset of pressure data indicated close agreement with coupled numerical simulation. A procedure in potential deployment of pressure hit catalogues for real-time modification of multi-well completion and re-fracturing design was lastly provided.

Because of the inherited uncertainty associated with locating the subsurface origin of passive pressure responses, yet measured at wellhead, more robust interpretation techniques are required for a better on-site assessment of fracturing operations. The possibility of employing pressure hit catalogues for evaluation of well interference, parent-child interactions, complex structure of stimulated fractures, and reservoir drainage, is an effort in that direction, aiming to monitor, and if required, to remediate well spacing, completion treatments, and re-fracturing designs.

File Size  1 MBNumber of Pages   21

3DEC Manual, Itasca Consulting Group Inc. 2017.

Bearinger, D., and Hillier, C. (2016) Fracture Characterization: From Core to Discrete Fracture Network Model, AAPG Annual Convention and Exhibition, Calgary, AB, Canada, June 19-22.

Bearinger, D. (2017) Personal Communications, CNOOC International Limited, Calgary.

Cipolla, C.L., Warpinski, N.R., Mayerhofer, M.J., Lolon, E.P. (2008) The Relationship between fracture complexity, reservoir properties, and fracture treatment design. Presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, September 21-24. SPE-115769-PA. http://dx.doi.org/10.2118/115769-PA.

Cundall P.A. (1971) A Computer Model for Simulating Progressive, Large-Scale Movements in Blocky Rock Systems, In Proc. Symp. Int. Rock Mech., 2 (8).

Cundall, P.A., Hart, R.D. (1992) Numerical Modelling of Discontinua, Engineering Computations, 9 (2): 101–113, doi:10.1108/eb023851.

Daneshy, A. A., Au-yeung Jessica, Thompson, T., & Tymko, D. W. (2012) Fracture Shadowing: A Direct Method for Determination of the Reach and Propagation Pattern of Hydraulic Fractures in Horizontal Wells. Society of Petroleum Engineers. doi:10.2118/151980-MS.

Dunphy, R., Campagna, D. (2011) Fractures, Elastic Moduli & Stress: Geological Controls on Hydraulic Fracture Geometry in the Horn River Basin, Recovery CSGP/CSEG/CWLS Convention, Calgary, Canada 9–12 May

Dunphy, R., Dola, J., Gale, J. (2012) Natural Fracture Stratigraphy of Gas Shales in the Horn River Basin, NEBC, Canada: Relation to Lithostratigraphy and Implications for Hydraulic Fracture Growth. AAPG (American Association of Petroleum Geologists) Annual Convention, 22–25 April, Long Beach, CA.

Fulford, D. S., Bowie, B., Berry, M. E., Bowen, B., Turk, D. W. (2016) Machine Learning as a Reliable Technology for Evaluating Time/Rate Performance of Unconventional Wells. Society of Petroleum Engineers. doi:10.2118/174784-PA.

FracMan Manual, Golder Associates Inc. 2015.

Hossain, M. M., Rahman, M. K., & Rahman, S. S. (2000) Volumetric Growth and Hydraulic Conductivity of Naturally Fractured Reservoirs during Hydraulic Fracturing: A Case Study Using Australian Conditions. Society of Petroleum Engineers. doi:10.2118/63173-MS.

Hulsey, K.M., Slatt, R.M., Dunphy, R. (2011) Lithofacies Characterization and Sequence Stratigraphic Framework of Some Gas-Bearing Shales Within the Horn River Basin, Northeastern British Columbia, AAPG Annual Convention, 10-13 April, Houston, Texas.

Lehmann, J., Budge, J., Palghat, A., Petr, C., & Pyecroft, J. (2016) Expanding Interpretation of Interwell Connectivity and Reservoir Complexity through Pressure Hit Analysis and Microseismic Integration. Society of Petroleum Engineers. doi:10.2118/179173-MS.

Lorenz, J.C., Teufel, L.W., Warpinski, N.R. (1991) Regional fractures: I, A mechanism for the Formation of Regional Fractures at Depth in Flat-Lying Reservoirs, American Association of Petroleum Geologists, 5: 1714–1737.

Nagel, N.B., Gil, I., Sanchez-Nagel, M., Damjanac, B. (2011) Simulating Hydraulic Fracturing in Real Fractured Rocks - Overcoming the Limits of Pseudo3D Models, Society of Petroleum Engineers. doi:10.2118/140480-MS.

Nagel, N.B. (2013) Critical Geomechanics Concepts for Hydraulic Fracturing and Well Completions in Shales, AAPG Geoscience Technology Workshop, Geomechanics and Reservoir Characterization of Shales and Carbonates, July 16-17, Baltimore, Maryland.

Nagel, N.B., Sanchez-Nagel, M.A., Zhang, F.. (2013) Coupled Numerical Evaluations of the Geomechanical Interactions Between a Hydraulic Fracture Stimulation and a Natural Fracture System in Shale Formations, Rock Mech Rock Eng 46(3): 581–609. doi:10.1007/s00603-013-0391-x.

Pyecroft, J., Lehman, J., Chernik, P., Virues, C., Hendrick, J., Gore, J., … Bearinger, D. (2015) Plugless Non-Isolated Multi-Stage Hydraulic Fractured Horizontal Well Experiments in the Canadian Horn River Basin. Unconventional Resources Technology Conference. doi:10.15530/URTEC-2015-2154914.

Rangriz Shokri, A., Chalaturnyk, R. J., Bearinger, D., Virues, C., Lehmann, J. (2017) Constraining the Complexity of Stimulated Reservoir Volume during Multi-Stage Hydraulic Fracturing of Horizontal Wells through Inter-Well Pressure Hit Modeling. Society of Petroleum Engineers. doi:10.2118/187188-MS.

Rangriz Shokri, A., Babadagli, T., Jafari, A. (2016) A Critical Analysis of the Relationship Between Statistical- and Fractal-Fracture-Network Characteristics and Effective Fracture-Network Permeability. Society of Petroleum Engineers. doi:10.2118/181743-PA.

Saltiel, S., Selvadurai, P.A., Bonner, B.P., Glaser, S.D., Ajo-Franklin, J.B. (2017) Experimental development of low-frequency shear modulus and attenuation measurements in mated rock fractures: shear mechanics due to asperity contact area changes with normal stress. Geophysics 82 (2): 19–36

Sardinha, C. M., Petr, C., Lehmann, J., Pyecroft, J. F., Merkle, S. (2014) Determining Interwell Connectivity and Reservoir Complexity Through Frac Pressure Hits and Production Interference Analysis. Society of Petroleum Engineers. doi:10.2118/171628-MS.

Tian, C., Horne, R. N. (2015). Machine Learning Applied to Multiwell Test Analysis and Flow Rate Reconstruction. Society of Petroleum Engineers. doi:10.2118/175059-MS.

Virues, C., Budge, J., von Lunen, E. (2015) Microseismic-Derived Expected Ultimate Fracture Half-Height Above/Below Wellbore in Unconventional Stimulated Reservoir Volume in a Multi-F ractured Horizontal 10 Well Pad - Canadian Horn River Basin Case Study. Society of Petroleum Engineers. doi:10.2118/174954-MS.

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in