Data-Driven Reservoir Modeling
He has authored more than 170 technical papers and carried out more than 60 projects for NOCs and IOCs. He is a SPE Distinguished Lecturer and has been featured in the Distinguished Author Series of SPE’s Journal of Petroleum Technology (JPT) four times. He is the founder of Petroleum Data-Driven Analytics, SPE’s Technical Section dedicated to machine learning and data mining. He has been honored by the US Secretary of Energy for his technical contribution in the aftermath of the Deepwater Horizon (Macondo) incident in the Gulf of Mexico and was a member of US Secretary of Energy’s Technical Advisory Committee on Unconventional Resources (2008-2014). He represented the United States in the International Standard Organization (ISO) on Carbon Capture and Storage (2014-2016).
Data-Driven Reservoir Modeling introduces new technology and protocols (intelligent systems) that teach the reader how to apply data analytics to solve real-world, reservoir engineering problems. The book describes how to utilize machine-learning-based algorithmic protocols to reduce large quantities of difficult-to-understand data down to actionable, tractable quantities. Through data manipulation via artificial intelligence, the user learns how to exploit imprecision and uncertainty to achieve tractable, robust, low-cost, effective, actionable solutions to challenges facing upstream technologists in the petroleum industry.
Download citation file:
Table of Contents
-
ForewordByTurgay ErtekinTurgay ErtekinProfessor of Petroleum and Natural Gas Engineering, Pennsylvania State University, University Park, Pennsylvania,USASearch for other works by this author on: