Abstract
The amount of trapped oil in hydrocarbon rich shale reservoirs recoverable through Enhanced Oil Recovery methods such as low salinity water flooding has been an ongoing investigation in the oil and gas industry. Reservoir shales typically have relatively lower amounts of swelling clays and in theory, can be exposed to a higher chemical potential difference between the native and injected fluid salinity before detrimental permeability reduction is experienced through the volumetric expansion of swelling clays. This fluid flux into the pore spaces of the rock matrix acting as a semi permeable membrane is significant enough to promote additional recovery from the extremely low permeability rock. The main goal of this paper is to determine how osmosis pressure build up within the matrix affects geomechanical behavior and hydrocarbon fluid flow. In this study we investigate Pierre shale samples with trace amount of organic content and high clay content as an initial step to fully understanding how the presence of organic content affects the membrane efficiency for EOR applications in shales using low salinity fluid injection. The same concept is also valid when slickwater is utilized as fracturing fluid as majority of the shale reservoirs contain very high salinity native reservoir fluid that will create large salinity contrast to the injected slickwater salinity.
The organic-rich reservoir shales typically have a TOC content of approximately 5 wt% or higher with TOC occupying part of the bulk matrix otherwise to be filled up by clays and other minerals. With less clay within the rock structure, the amount of associated clay swelling arising from rock fluid interaction will be limited. The overall drive of water into the matrix brings added stress to the pore fluid known as osmotic pressure acting on the matrix that also creates an imbalance in the stress state. The native formation fluid with salinity of 60,000 ppm NaCl has been used while 1,000 ppm NaCl brine is utilized to simulate the low salinity injection fluid under triaxial stress conditions in this phase of the study reported here. A strong correlation is obtained between the osmotic efficiency and effective stress exerted on the shale formation. The triaxial tests conducted in pursuit of simulating stress alteration under the osmotic pressure conditions and elevated pore pressure penetration tests indicated that the occurrence of swelling directly impact the formation permeability. These structural changes observed in our experimental results are comparable to field case studies.