Organic-rich shale lithofacies, primarily defined by mineral composition and organic matter richness, reflects the features of the two critical factors for unconventional shale reservoirs. The research of shale lithofacies can aid in identifying shale gas productive zones and designing horizontal well and hydraulic fracturing. Seven shale lithofacies in Marcellus Shale have been defined by mineral composition and TOC content. Prediction of shale lithofacies by conventional logs is the key step to define the distribution of shale lithofacies laterally and vertically, but the relationship between lithofacies and logs is non-linear and complex. The effectiveness of conventional mathematical methods is limited. Artificial intelligence (AI) classifiers, such as artificial neural network (ANN), and support vector machine (SVM), can solve complex nonlinear problems. In addition, learning algorithms based on AI could also work together with AI classifiers to recognize shale lithofacies. Meanwhile, an innovative decomposition method, hierarchical decomposition, has been proposed and used to enhance the performance of ANN and SVM classifiers in predict Marcellus Shale lithofacies. In this paper, we devoted ourselves to comprehensively discuss the strength and weakness of these AI algorithms in pattern recognition and present an integrated workflow for organic-rich shale lithofacies prediction. This methodology should be helpful for recognizing shale lithofacies in other shale-gas plays, which aids in identifying high productive shale gas sweet spots.
Skip Nav Destination
SPE/AAPG/SEG Unconventional Resources Technology Conference
August 25–27, 2014
Denver, Colorado, USA
ISBN:
978-1-61399-360-6
Application of Artificial Intelligence on Black Shale Lithofacies Prediction in Marcellus Shale, Appalachian Basin
Guochang Wang;
Guochang Wang
University of Chinese Academy of Sciences
Search for other works by this author on:
Yiwen Ju;
Yiwen Ju
University of Chinese Academy of Sciences
Search for other works by this author on:
Chaofeng Li;
Chaofeng Li
University of Chinese Academy of Sciences
Search for other works by this author on:
Guojian Cheng
Guojian Cheng
Xi’an Shiyou University
Search for other works by this author on:
Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, August 2014.
Paper Number:
URTEC-1935021-MS
Published:
August 25 2014
Citation
Wang, Guochang , Ju, Yiwen , Carr, Timothy R., Li, Chaofeng , and Guojian Cheng. "Application of Artificial Intelligence on Black Shale Lithofacies Prediction in Marcellus Shale, Appalachian Basin." Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, August 2014. doi: https://doi.org/10.15530/URTEC-2014-1935021
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$28.00
Advertisement
37
Views
Advertisement
Suggested Reading
Advertisement