This paper describes verification of a fully three-dimensional, massively parallel, finite element based simulation framework (GEOS) for addressing the fully coupled, hydro-mechanical behavior of jointed and fractured unconventional reservoirs to hydraulic stimulation. Unlike many common engineering tools, GEOS is not restricted to planar or single fracture propagation or to simple models of material behavior, making it appropriate for simulation of a wide range of problems that require a general treatment. Additionally, the massively parallel nature of the calculations allows the code to address problems up to reservoir scale on large-scale computer clusters. The code is shown here to reproduce analytical solutions for radial and lateral fracture propagation. An example is also given to demonstrate the interplay between the propagation of multiple hydraulically driven radial fractures and the accompanying changes in the stress orientation that moderate their growth.
Skip Nav Destination
SPE/AAPG/SEG Unconventional Resources Technology Conference
August 25–27, 2014
Denver, Colorado, USA
ISBN:
978-1-61399-360-6
Simulation of Hydraulic Fracture Networks in Three Dimensions Utilizing Massively Parallel Computing Resources
Randolph R. Settgast;
Randolph R. Settgast
Lawrence Livermore National Laboratory
Search for other works by this author on:
Scott M. Johnson;
Scott M. Johnson
Lawrence Livermore National Laboratory
Search for other works by this author on:
Pengcheng Fu;
Pengcheng Fu
Lawrence Livermore National Laboratory
Search for other works by this author on:
Stuart D.C. Walsh
Stuart D.C. Walsh
Lawrence Livermore National Laboratory
Search for other works by this author on:
Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, August 2014.
Paper Number:
URTEC-1923299-MS
Published:
August 25 2014
Citation
Settgast, Randolph R., Johnson, Scott M., Fu, Pengcheng , and Stuart D.C. Walsh. "Simulation of Hydraulic Fracture Networks in Three Dimensions Utilizing Massively Parallel Computing Resources." Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, August 2014. doi: https://doi.org/10.15530/URTEC-2014-1923299
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$28.00
Advertisement
9
Views
Advertisement
Suggested Reading
Advertisement