This paper proposes a novel approach to model multiphase flow of hydrocarbons in unconventional shale reservoirs. Understanding the storage/flow mechanisms from such reservoirs as in the Eagle Ford, Woodford, and Bakken, is crucial in the overall effort to increase the ultimate hydrocarbon production. Based on the geological evidence, three different pore systems with distinctive storage/transport characteristics have been recognized in the shale reservoirs - inorganic medium, kerogen (or organic matter), and natural/hydraulic fractures. Our simulation results show that compared to oil, gas recovery in shale reservoirs can be more efficient due to a dual Darcy/diffusive flow mechanism of the gas phase (as a result of molecule-wall collisions). Darcy flow is considered as the only flow means for the liquid phase transport in such reservoirs. Although oil-wet kerogen is considered to be a rich source of hydrocarbon, nano-darcy permeability of the rock hinders oil production in organic-rich shale. Our sensitivity analysis shows that considering diffusive flow will increase gas recovery by facilitating gas transport in kerogen. On the other hand, although increasing adsorption capabilities in the rock means more hydrocarbon is stored in the organic carbon, the oil-wet nature of the hydrocarbon-saturated kerogen will control the depletion process in this media. Therefore, the limited pressure decrease in the kerogen reduces the effects of hydrocarbon desorption on oil and gas recovery.
Skip Nav Destination
SPE/AAPG/SEG Unconventional Resources Technology Conference
August 25–27, 2014
Denver, Colorado, USA
ISBN:
978-1-61399-360-6
Three-Phase Flow Simulation in Ultra-Low Permeability Organic Shale via a Multiple Permeability Approach
John Killough
John Killough
Texas A&M University
Search for other works by this author on:
Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, August 2014.
Paper Number:
URTEC-1895733-MS
Published:
August 25 2014
Citation
Alfi, Masoud , Yan, Bicheng , Cao, Yang , An, Cheng , Wang, Yuhe , and John Killough. "Three-Phase Flow Simulation in Ultra-Low Permeability Organic Shale via a Multiple Permeability Approach." Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, August 2014. doi: https://doi.org/10.15530/URTEC-2014-1895733
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$28.00
Advertisement
13
Views
Advertisement
Suggested Reading
Advertisement