A great variety of factors can influence production, and it is often difficult to discriminate how significant the impact of a single factor is. The unconventional nature of the Bakken tight oil play requires considering both geological and technological aspects, as completion designs evolved at a rapid pace over recent years. Based on an integrated and correlative approach this study aims to understand why certain areas in the Bakken play are considerably more productive than others, and to identify the responsible factors.

The Late Devonian to Early Mississippian Bakken Formation in the Williston Basin is a world-class petroleum system and represents the most prolific tight oil play known to date. The source rocks in this unconventional system are the highly organic-rich Lower and Upper Bakken shale members. The silty, dolomitic Middle Bakken member, sandwiched in-between the shales, and upper Three Forks member, underlying the Bakken Formation are the main target horizons for production.

The Bakken is a technology-driven play and a clear trend of increasing production rates over time is evident as drilling techniques and the completion design of wells are progressively becoming more sophisticated. Latest since 2010 the majority of operators employ massive hydraulic fracturing treatments with up to 40 stages and millions of pounds of proppant. However, numerous older wells outperform younger wells despite technological advancements, suggesting that geological factors have a larger impact on production than the completion design.

Geological factors influencing productivity can reach from reservoir quality and thickness, over structural and stratigraphic framework, rock-mechanical properties, natural fractures, to pore-overpressure distribution and organic geochemical parameters. The interplay of hydrocarbon generation potential and maturity results in tremendous overpressuring, and creation of fracture permeability and secondary porosity. A combination of overpressure- and buoyancy-driven migration of hydrocarbons into up-dip located traps can result in large-scale accumulations, as for example Sanish-Parshall and Elm Coulee.

The comprehensive and integrated analysis of technological and geological data allowed identification of different Bakken play types, which are productive for different reasons. The knowledge and understanding of where and why sweetspot and low productivity areas occur is invaluable for both current development and future exploration.

URTeC 1596247

This content is only available via PDF.
You can access this article if you purchase or spend a download.