Pore-level molecular dynamics simulation studies are conducted towards an understanding of poor recovery of frac-water, progressive increase in produced water salinity, and identification of potential trapping mechanisms for frac-water and its influence on long-term well productivity in shale gas and oil reservoirs. The kerogen pores of shales are represented by two organic pore models. The first model containing only carbon is intended to mimic the nature of highly mature kerogen. The second model helps understanding of the fluid behavior in partially mature shales containining oxygenated functional groups with non-zero oxygen to carbon ratio. The maturation processes of these kerogen models are described by means of a molecular dynamics simulation. These models are shown to describe effectively the essential structural features observed in SEM images which indicate surface roughness, tortuous paths, material disorders, and imperfect pore openings of kerogen pores, and are therefore superior to the frequently assumed graphene slit pore systems. The effect of maturation, pore surface mineralogy, and pore roughness on the wettability characteristics of organic kerogen pores is delineated. Distribution of saline water in organic and inorganic pores is described as a function of pore size and morphology. These pore-scale studies reveal important insights about the distribution of dissolved ions and water in organic pores, and the frac-water distribution and produced water salinity following hydraulic fracturing.
Shale gas and oil development activities have continually undergone several stages of refinement and continues to be driven by our ability to create extensive multi-stage hydraulic fracture treatments along several thousands of feet of horizontal laterals. Although these efforts have largely progressed successfully, unfortunately, our current understanding of the complex interplay of hydrocarbons and water in organic and inorganic shale nanopores is rather limited. Among the key questions remaining unanswered are related to the explanation of the poor recovery of frac-water, the progressive increase in produced water salinity, and the potential trapping mechanisms for frac-water and its influence on long-term well productivity.
URTeC 1579803