The Isa Superbasin is a Paleoproterozoic to Mesoproterozoic succession (approximately 1670-1575 Ma), primarily described in north-west Queensland. Despite the basin's frontier status, recent exploration in the northern Lawn Hill Platform has demonstrated shale gas potential in the Lawn and River supersequences. Here, we characterise the unconventional reservoir properties of these supersequences, providing new insights into regional shale gas prospectivity.

The depths, thicknesses and mappable extents of the Lawn and River supersequences are based on the 3D geological model of Bradshaw et al. (2018). Source rock net thickness, total organic carbon (TOC), kerogen type and maturity are characterised based on new and existing Rock-Eval and organic petrology data, integrated with petroleum systems modelling. Petrophysical properties, including porosity, permeability and gas saturation, are evaluated based on well logs. Mineralogy is used to calculate brittleness (see also Jarrett et al., 2019, this volume). Regional stress and pressure regimes are also reviewed.

Abundant source rocks are present in the Isa Superbasin succession. Overall, shale rock characteristics were found to be favourable for both sequences assessed; both the Lawn and River supersequences host thick, extensive, and organically rich source rocks with up to 7.1 wt% total organic carbon (TOC) in the Lawn Supersequence and up to 11.3 wt% TOC in the River Supersequence. Net shale thicknesses demonstrate an abundance of potential shale gas reservoir units across the Lawn Hill Platform.

With average brittleness indices of greater than 0.5, both the Lawn and River supersequences are interpreted as likely to be favourable for fracture stimulation. As-received total gas content from air-dried samples is favourable, with average values of 0.909 scc/g for the Lawn Supersequence and 1.143 scc/g for the River Supersequence

The stress regime in the Isa Superbasin and the surrounding region is poorly defined; however, it is likely dominated by strike-slip faulting. Modelling demonstrates limited stress variations based on both lithology and the thickness of the overlying Phanerozoic basins, resulting in likely inter- and intra-formational controls over fracture propagation. No evidence of overpressure has been observed to date, however, it is possible that overpressures may exist deeper in the basin where less permeable sediments exist.

This review of the shale reservoir properties of the Lawn and River supersequences of the Isa Superbasin significantly improves our understanding of the distribution of potentially prospective shale gas plays across the Lawn Hill Platform and more broadly across this region of northern Australia.

This content is only available via PDF.
You can access this article if you purchase or spend a download.