
T. P.8059 

Fluid Migration Across Fixed Boundaries in Reservoirs 
Producing by Fluid Expansion 

ABSTRACT 

R. E. COLLINS 

MEMBER AIME 

The existence of fluid migration across fixed bounda
ries in oil and gas reservoirs has been known for many 
years. Several techniques have heen developed in the 
past for estimating the rate of migration across fixed 
boundaries as an aid in planning field development and 
in the valuation of oilfield properties. The principal de
terrent to the use of these techniques lies in the rather 
extensive reservoir and field data required for calcula
tions of fluid migration. For this reason, a new, simpli
fied procedure has been developed which makes possible 
the calculation of fluid migration with a minimum of 
field and reservoir data. This new technique is based on 
certain solutions of the differential equations describing 
flow in the reservoir which assume, for the portion of 
the reservoir of interest, that the formation can be ap
proximated by a homogeneous rock of uniform thick
ness, that only a single mobile fluid phase exists, and 
that fluid production at the well is solely a result of ex
pansion of the reservoir fluids. 

The results of the present work are compiled in a 
set of curves. These curves can be used to calculate 
both rate and cumulative fluid migration when the above 
assumptions are justified. The only data required for 
such calculations are the production histories of all 
wells in the field, the permeability and porosity of the 
reservoir, the compressibility and viscosity of the fluid, 
and the shape of the reservoir. 

INTRODUCTION 

The migration of fluids across fixed boundaries in oil 
and gas reservoirs has long been recognized as an en
gineering and economic problem, but no methods for 
estimating the extent of migration during the develop
ment stage of a reservoir have been published. 

The investigation reported here has been directed 
toward providing a simple technique for estimating the 
extent of such migration and has therefore been re
stricted to the simple case of a homogeneous reservoir 
of uniform thickness containing compressible liquids. It 
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is assumed that only a single mobile fluid phase exists 
and that fluid production at the weIls is solely by ex
pansion of the reservoir fluids. Obviously, few, if any, 
reservoirs conform to these assumptions during their 
entire productive life. On the other hand, most reser
voirs approximate fluid expansion reservoirs during their 
initial stages of primary production. Consequently, the 
present work should be applicable during the field de
velopment of most reservoirs, regardless of whether or 
not they ultimately are gas cap, dissolved-gas, or water
drive reservoirs. 

The mathematical analysis of this problem has been 
outlined in the Appendix, while the results of the in
vestigation are presented in the following discussion. 

DISCUSSION OF CALCULATION PROCEDURE 

SINGLE WELL, INFINITE RESERVOIR 

The procedure for calculating fluid migrations is 
based on solutions of the partial differential equations 
describing the flow of a homogeneous compressible 
liquid in a homogeneous reservoir of uniform thick
ness. This differential equation has the form of the weIl
known diffusion equation. The equation, as applicable 
to our problem, is 

o'p o'p </>[Lc op 
ox' + oy' = -7{ at' 

where p is fluid density,</> is porosity, ,[L is viscosity, c 
is compressibility,* and k is permeability; x, y and tare 
the space coordinates and time. Derivation of this equa
tion is given in the Appendix. 

The analytical solution of this equation for a single 
well of negligible radius producing at a constant rate, 
q, from a reservoir of infinite areal extent for a time, t, 
can be readily obtained. From this solution the rate of 
flow and also the cumulative flow across a straight line 
segment of length, I, at a perpendicular distance, a, 
from the well can be computed. One end of the line 
must be on the perpendic~lar joining the weIl to the 

':'The compressibility. c, is dependent upon the volumes and com
pressibilities of the oil. connate water Rnd reservoir rock. In most 
cases the contribution from the reservoir rock may be neglected so 
that c may be expressed as c = co(l ~ Sw) + ew Sw. where Co and 
Cw are the oil and connate water compressibilities. respectively. and 
S w is the connate water saturation. 
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FIG. I-DIAGRAM OF WELL OF NEGLlGIBLE RADI[;S 

PRODUCING AT A CONSTANT RATE. 

line. This is shown in Fig. 1. It is demonstrated in the 
Appendix that all possible values of the flow rate, q1., 
across the line, I, can be plotted in the form, q1./ q vs 
4kt/CPfLc'8', with 1/'8 as a parameter. Here, q is the pro
duction rate of the well. Such curves are plotted in Fig. 
2. Also it is found that the cumulative flow across the 
line, Q1., can be plotted as Q1./Q vs 4ktjcpfLc'8', with 
1/'8 as a parameter. Here, Q is the cumulative produc
tion of the well. This plot is shown in Fig. 3. Note that 
the units are those shown in the legend of each figure. 

Using the two sets of curves in Figs. 2 and 3 and 
simple subtraction, the value of q1. or Q1. for a line 
segment such as Be in Fig. 1 can be computed. Thus, 

( q: ) Be = ( ~ 1.) .W - ( q: ) Ai: ' 

and, similarly, 

(~) lie = (~) AC -(~) All 

Using these relations the values of q1./q and Q1./Q for 
any line segment can be obtained. Note that the values 
of q1./q and Q1./Q for the line segments AC and AB 
can be obtained from the curves of Figs. 2 and 3 since 
these line segments correspond to the case already 
given. 

MULTIPLE WELLS, INFINITE RESERVOIR 

To calculate q1. and Q1. for a given line segment in 
an infinite reservoir containing several wells producing 
at constant rates q" q" ... , where the wells are num-
bered 1, 2, . . j, j + 1, ... , etc., the results derived in 
Appendix A can be employed; namely, 

ql. = Lq;(q:) J ' 

j 

where (q1./q); is the value that q1./q would have if 
only the jth well were in the reservoir and 

~ 
the production rate of jth well 

q;, if well is below line segment, or 
q~ = t minus the production rate of jth 

- qj' well if well is above line segment. 
Note that (q1./q); can be read from the curves in Figs. 
2 and 3 for each well. 

The value of q1. derived from the cited procedure 
will be positive if the net flow across the line is from 
above to below the line segment. 

The value of Q1. for multiple wells is obtained in 
a similar manner, namely, 

Q1. = L Q;(~) j , 
j 

where Q7 is related to the cumulative production of 
the jth well like q~ above is related to the production 
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FIG. 2-FLOW RATE ACROSS FIXED LII'>E. 

rate. Here (Q1./Q) j is the value of Q1./Q which would 
exist if the jth well were the only well in the field. 

MULTIPLE BOUNDARIES 

With these tools in hand the net flow into or out of 
a region enclosed by straight line segments, a, b, c, etc., 
in an infinite reservoir containing several wells pro
ducing at constant rates can be calculated. By simple 
addition, q1. for the region is q = (qlJ a + (q1.). + 
(q1.L + (q1.). + (q.L)" and similarly for Q.L Here, 
flow into the region is considered positive. The flow 
across each line can be computed as outlined pre
viously, taking care to use the correct sign on q:. Here, 
q~ will be + qj if the jth well causes flow into the re
gion across the line being considered. This same pro
cedure can be applied to compute Q1.. 

BOUNDED RESERVOIRS 

In the case of bounded reservoirs one can employ 
the method of images to represent the boundaries. 
In practice only those wells nearest the boundary need 
be considered in this way. To determine whether an 

: 

.'6~~mBI1_m 24~lIend: 
k ~ permeability, miliidorcys 

~ ~ VISCOsity, canlipoiSes 
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FIG. 3-CUI\IULATIVE FLOW ACROSS FIXED LINE. 
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image is required for a given well one can consider 

Image 

b 

a 

Well 

Bounda 

a=b 

the boundary as a fixed line 
and compute qJjq for this 
line and the well being con
sidered. If the value of qlj 
q thus determined is negli
gibly small, then an image 
of this well is not required. 
If such is not the case, then 
the image well is placed as 
shown, with the production 
rate and production time of 

the image well being the same as those of the well. Af
ter all necessary images are located proceed as for an 
infinite reservoir, treating the images ~s real wells. 

VARIABLE PRODUCTION RATES 

For wells having variable rates and/or shut-in per
iods, the following procedure can be used. 

Suppose the production rate of the well as a function 
of time can be approximated by step-wise changes of q. 
That is, the production rate during the time tn to tn+, 
is taken as constant and equal to the average rate for 
this period. Thus, the rate history can be represented by 
the following. 

q = q, , o<t<t, 
q = qn, tn<t<tn+" l<n<N 
q = qN, tN<t . 

The selection of the constant-rate periods should be 
made so that the actual rate is nea~ly constant in the 
period. That is, the to's are selected as those times 
at which the rate changes sharply. In the Appendix, 
section titled, "Variable Rates; Single Fixed Line," 
it is shown that for this case ql. is given by 

N 

ql. = L (qr. - qn-l) (q~) n ' 

n=l 

where (ql./ q) n is the value ql./ q would have if the rate 
were constant and the production time were t - tn_" 

t>tN • 

The same analysis applies to Ql., namely, 
N 

Ql. = L (~l) Qn , 

n = 1 n 

where Qn is given by Qn = (qn - qn-,) (t - tn-I)' Here, 
(Ql./Q)n is the value Ql./Q would have for constant 
rate and production time, t - tn-I' 

With the procedures given here, a wide variety of 
migration problems can be solved. Two examples of 
such problems are treated in the next section. 

EXAMPLES 

EXAMPLE PROBLEM No.1 
As the first example illustrating the techniques in·· 

volved in calculating fluid migration across fixed lines, 
the well geometry shown in Fig. 4 is considered. Note 
that since Well No. 2 is very close to the reservoir 
boundary an image well is included, i.e., No.2'. 

The pertinent data for this problem are: k = 25 md; 

TABLE I-PERTINENT DATA FOR EXAMPLE PROBLEM NO. 1 

Time of Production 
Well X Y q completion time 
No. (It) (ft) (B/D) (days) (days) 

1 1,400 50 150 0 I 
2 200 200 100 60 1-60 
3 1,400 -50 100 160 1-160 
4 600 -300 100 220 1-220 
2' -200 200 100 60 1-60 

80 

y-axiS t 

(a) A x-axis 

-- CXl 

.4 
(b) 

Region being studied 

FIG. 4--WELL GEO~IETRY FOR EXA:\IPLE No. 1. 

cP = 0.25; C n = 5.01 X 10 4 vol/vol/psi; C w = 3 X 10-" 
vol/vol/psi; Sw = 0.20; fL= 2 cp; and distance OA = 
1,600 ft. 

In this analysis flow rates and cumulative production 
occur as ratios; hence, if the q's and Q's are expressed 
at reservoir conditions, the ql.'s and Ql.'s will be at 
these conditions also. 

The effective compressibility is computed as, C = Co 

(1 - Sw) + C w Sw = .8(5.01 X 10-4
) + .2(3 X 10-6

) 

= 4 X 10-4 vol/vol/psi. 
Now, to calculate the net flow into the indicated 

region at several different times: first, t = 160 . days, 
when the first well in this region is completed, second, 
at t = 220 days when the second well in the region is 
completed, and finally at t = 320 days or 100 days af
ter the second well in the region is completed. 

To illustrate the method in detail, the flow across 
line (a) due to Well No.1 at time t = 160 days is cal
culated. First, a perpendicular line is constructed from 
this well to line (a). This gives a line segment to the 
right of the perpendicular of length 200 ft and a line 
to the left of length 1,400 ft. For the line to the right, 
1/'8 = 200/50 = 24, and using the units specified in 
Fig. 2, 

4kt 4 X 25 X 160 _ ,1 

¢fLC'8' 0.25 X 2 X 4 X 10-4 X (50)' - 3.2 X 10 

Using the curves of Ql./Q in Fig. 3, it is found that 
Ql./Q = 0.197. For the left line segment, 1/8 = 1,400/ 
50 = 28, and the same value for the time group, 4kt/ 
CPfLc'8'. From the curve, Fig. 3, it is found that Ql./Q = 
0.212. Thus, the total flow across line (a) due to Well 
No.1 is (Ql./Q)'0 = 0.197 + 0.212 = 0.409. 

The cumulative production of Well No.1 at this time 
is Q = q,t = 150 X 160 = 24,000 bbl, and since this 
well causes flow out of the region being considered, 
Q"; = - Q, = - 24,000 bbl. Then, 

(Q-L) la = Q;" (~l.),::= - 24,000 X 0.409 , 

or (Ql.),n = - 9,816 bbl. 
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TABLE 2-CALCULATIONS 
Production 

4kt 
Ql/Q . 

Well Pert line time Qj, Qlii 
line No. (1m [day.) ¢/J.c6' Part line Whole line [bbl) [bbl) 
(a) 1 28 160 3.2 X 10' 0.212 
(a) 1 4 160 3.2 X 10' 0.197 0.409 -24,000 -9,816 
(a) 2 1 100 1.25 X 10' 0.078 
(a) 2 7 100 1.25 X 10' 0.104 0.182 -10,000 -1,820 
(a) 2 9 100 1.25 X 10' 0.104 
(a) 2' 1 100 1.25 X 10>-·0.078 0.026 -10,000 - 260 
(b) 1 0.25 160 2 X 10'-0.030 
(b) 1 CJ) 160 2 X 10' 0.126 0.096 24,000 + 960 
(b) 2 0.1429 100 2 X 10' 0 
(b) 2 CJ) 100 2 X 10' 0 0 10,000 0 
(b) 2' 0.1111 100 2 X 10' 0 
(b) 2' CJ) 100 2 X 10' 0 0 10,000 0 

Net Ql = - 10,936 bbl 

To compute (Q.l)lb' the flow across line (b) due to 
Well No, 1, a perpendicular is constructed from the 
well to the extension of line (b) and proceed as for 
line (a). 

Here it is necessary to calculate the flow across the 
semi-infinite line starting at A and going downward and 
subtract from it the flow across the extended portion 
of line (b)' Note that here (Q.l) 1b will turn out positive 
because Well No. 1 causes flow into the region. The 
..:alculations which were made 160 days after completion 
of Well No. 1 are summarized in Table 2. Proceeding 
m the manner outlined here, the desired Q.l is obtained 
220 and 320 days after completion of Well No. 1. The 
results of these calculations are summarized in Table 3. 

TABLE 3-SUMMARY OF CALCULATIONS 
Production 

rime of well 
No.1 
days) 

160 
220 
320 

Net flow 
into region 

[bbl) 
-10,936 
-11,358 
-11 ,942 

Thus, the region is continually losing fluid to adjacent 
areas. 

EXAMPLE PROBLEM No.2 
The second example considered here is not presented 

in detail, only the final results are given to illustrate 
the time dependence of fluid migration across fixed 
lines. In this case a single fixed line of essentially 
infinite length is considered with the well geometry 
shown in Fig. 5. The pertinent data are k = 25 md; 
1> = 0.25;,/1, = 0.20; and c = 4 X 10-4 vOl/vol/psi 
(effective value). 

TABLE 4-PERTINENT DATA FOR EXAMPLE PROBLEM NO.2 
Completion Production 

Well q time time 6 
No. [B/D) [days) . [days) J!!L 

1 150 0 t 200 
2 100 100 t - 100 100 
3 100 200 t - 200 50 

Here, positive flow is toward Well No. 1. 
Results of the calculations for this problem are shown 

in Fig. 6 where plots of q.l and Q.l vs time are given. 
Note that when Well No. 2 is put on production q.l 

, , 
'2 • 

I , 
'3 • 

FIG. 5-WELL GEOMETRY FOR EXAMPLE No.2. 
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starts to decrease rapidly. It appears that q.l would have 
stabilized at a positive value, and this is actually true, 
if Well No.3 had not been put on production. How
ever, q.l decreases again when Well No. 3 is put on 
production and finally stabilizes at a negative value. 
The effect of these variations in q.l on Q.l is shown 
in Fig. 6. 

CONCLUSIONS 

The method presented in this paper for calculating 
fluid migration across fixed lines is simple, rapid, and 
requires a minimum of reservoir data. Proper applica
tion of such calculations should be of great benefit 
in valuation of properties and planning field develop
ment. 

APPENDIX 

MATHEMATICAL THEORY 

SINGLE WELL; CONSTANT RATE; 

SINGLE FI~'ED LINE 

The equation of continuity, which assures the con
servation of mass, is 

o 0 op 
~ (pV x ) + ay (pV y ) = - 1>Tt (1) 

where p is the fluid density, 1> is the porosity of the 
medium, t is the time and v. and Vy are the x and y 
components of velocity, respectively. It is assumed here 
that the porous medium is uniform, the flow is two 
dimensional and the fluid is homogeneous. Combining 
this equation with Darcy's law yields 

o ( oP) 0 ( oP) 1>fL op (2) ox Pax +ay Pay =yTt 
where k is the permeability of the medium and fL is the 
viscosity of the fluid. Then, if the fluid density is related 
to the pressure by 

p = Pi e'(P-Pi) , (3) 

where p is fluid density at pressure P, Pi is density at 
pressure Pi' and c is the compressibility, Eq. 2 can be 
written as 

o'P o'P 1>ltC op 
ox' + oy' = -k- Tt (4) 

The relationship given in Eq. 3 is the correct pressure 
dependence for normal compressible liquids. 

The solution of Eq. 4 corresponding to a well of 
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negligible radius, at x = 0, y = 0, producing at the 
constant rate q (measured at initial reservoir pressure 
and temperature) for a time t, in a reservoir of essen
tially infinite areal extent, is' 

p(X,y,t) qfLc J e-~ 
- 47rkh T d~ . (5) 

<PfLC(X' + y') 
4kt 

Note in this solution the Pi of Eq. 3 is taken as the 
initial reservoir pressure and Pi is the fluid density at 
that pressure. The units used here and throughout this 
section are consistent units unless stated explicitly 
otherwise. 

With this solution of the flow equation as a basic 
tool proceed to consider the migration of fluid in the 
reservoir across a straight-line segment of length I at 
a perpendicular distance, 8, from a well producing at 
constant rate, q. This line segment, AB, is shown in 
relation to the well in Fig. 1. The mass rate of flow, m, 
(toward the well) across the line (gm/sec) is given by 

I -f k. h ( " ) op(x,8,t) d m- ~px,o,t x 
fL (iY 

(6) 

o 

or, the volume rate (at inital reservoir pressure) is 
m 

q..L = - , (7) 
Pi 

Eq. 6 is simply a direct application of Darcy's law. 
Employing Eq. 5 for p(x, y, t) to obtain 

op op qfLcP, e-a(x" + y')/t 
---=cp-=--y (8) 
cy oy 27rkh x' + y' 

where for convenience the notation, 

<Pf tC 
a = ~ (9) 

is introduced. Then, substituting Eq. 8 into Eq. 7 with 
m given by Eq, 6, yields 

I 
_ q f 8e - a(x' + 13')/t 

q..L - -2- , -L 82 dx. 7r x, 
(10) 

o 

which is an analytical expression for the rate of fluid 
migration across the line segment that is subject to 
evaluation. 

Also an expression for the cumulative flow across 
this line segment can be written simply by integrating 
Eq. 10 with respect to the time, t, thus, 

t I -a(x'+/P)/B 

Q f r8e dx 
Q..L = 27rt J x' + 8' dxd9 (11 ) 

o () 

Before proceeding to the evaluation of these integrals 
they can be written in a more useful form; thus, by 
changing variables in the integrals, 

and 

where 

and 

82 

f3 
q..L 1 Ie - 1(~' + 1)/" 

q = 27r J f + 1 dL (12) 
o 

" f3 g..L __ I_r re - l(P + l)/JL 
Q - 27raJ J f + 1 d~dfL, (13) 

I 
(J = --

8 

o 0 

(14) 

4kt 
a = <PfLc8 ' (15) 

Here, note that the units of q, q..L, Q and Q..L are imma
terial; that is, q..L/q is dimensionless as is Q..L/Q, thus 
the flow rate, ql., can be expressed in, say, surface 
barrels per day simply by expressing q in these units. 
The same holds true for Ql. and Q. 

For a line of infinite length, I = f3 = Ct:J, the cited 
integrals can be evaluated analytically. Thus, 

(
qL) = ~erfc ... /<PfLc8' (16) 
q 1=00 4 "4kt 

and 

=~{(1 +~)erfc~-
4 a ya 

2 e-1
/
a }, (17) 

Y7ra 
where, as always, a is given by Eq. 15 and erfc denotes 
the error function compliment defined as 

(18) 

u 

For finite f3 the integrals in Eqs. 12 and 13 are not 
very tractable, hence a numerical integration must be 
employed. The integral in Eq. 12, 

[

e- 1Iaa'+1) . 

~' + 1 d£, 
o 

is in a form satisfactory for numerical integration; this 
has been carried out on a medium speed magnetic 
drum computer for a wide range of values of a and 
many values of (3. 

Before applying numerical techniques to Eq. 13 it 
must, for practical reasons, be reduced from a double 
integral to one or more single integrals; this is accom
plished by suitable changes of variable and also inter
changing the order of integration. 

Thus, obtain 

Ql. _liJ~e - (z' + 1) la -Ii fize - (z' + 1) la 

Q - 7r (z'+ 1)2 dz 7r r (z'+ 1)' dz 
o o 

jJ 
1 fZ'e - (z' + 1)/0: 

+ --;; (z' + I)' dz. (19) 

o 

The first integral here can be evaluated analytically. 
Thus, 

00 

liJze- (Z3 + 1)/" dz = £e- 1/('( _ L 
7r (z' + 1)' 7r 7ra 

o 

where the Ei - function is defined as 

( 1) OOre-JL 
- Ei - ~ =. -fL- dp, 

11a 

(20) 

(21) 

Eq. 19 with the first integral given by Eq. 20 is in 
suitable form for numerical evaluation. The last two 
integrals in Eq. 19 have been evaluated numerically on 
the computer for a wide range of values of a and (3. 

As mentioned previously, the units for q, ql., Q and 
Q..L in the equations involving ratios of these quantities 
are arbitrary. Similarly, since f3 = 1/8 is dimensionless, 
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the units of I and 8 are arbitrary; it is only required 
that I and 8 have the same units. To express a in 
"oilfield units" (as given on the curves in Figs. 2 and 
3), have 

(~:~~,) oilfield = 0.158( ~:~~,) cg' (22) 

The calculated values of qJjq and Ql./Q, as ob
tained by the combination of analytical and numerical 
techniques, are plotted vs a with [3 as parameter in 
Figs. 2 and 3, respectively. 

As t and, hence, a approach infinity, Ql./Q, according 
to Eq. 19, approaches 

00 fJ 

(~l. ) a= 00 ~ f (z'~\), + ~ f (Z'Z~Zl)' 
fJ 0 

(23) 
These integrals can be evaluated to give, 

(~).,=oo =L tan-' [3 . (24) 

Thus, if Ql./Q is plotted vs (tan-'[3)/27T with a as 
parameter, the curves for large a should approximate 
straight lines. This result simplifies interpolation. Simi
larly, one can also show that 

( q: t = 00 = (~l. ) a = 00 (25) 

If it is desired to determine ql. and/or Ql. across 
a line BC such as shown in Fig. 1, note that by simple 
addition of integrals in Eqs. 12 and 13, 

ql. ql. 
- (x, - X" 8, a) = - ([3" 8, a) 
q q 

ql. 
- ([3" 8, a) , (26) 
q 

and similarly for Ql./Q. That is the value of ql./q 
corresponding to a line from x = 0 to x = I, = x, is 
read from the curves given in Fig. 2 and from this is 
subtracted the value for ql./q corresponding to a line 
from x = 0 to x = 1, = x" The remainder is the flow 
rate across the line from x = x, to x = x,. The same 
procedure applies to Ql./Q. 

MULTIPLE WELLS; CONSTANT RATES; 

SINGLE FIXED LINE 

By a well-known superposition theorem' the solution 
of the flow equation (Eq. 4) for an infinite reservoir 
containing N point sinks (wells of negligible radii) with 
production rate q., n = 1, 2 ... N, and production 
times tn, n = 1, 2, 3, ... N, is 

p(x, y, t) 

Pi 

(27) 
where 

r'n= (x - xJ' + (y - Yo)' (28) 

x. and y~ being the x and y coordinates of the nth well. 
It is desired to calculate the rate of migration across 

the line from x = 0 to x = 1 at y = 8 for this system 
of wells. Positive flow is assumed in the direction of 
decreasing y. Eq. 6, 

I 

Jkh op 
m = - p(x, 8, t) ",- (x, 8, t) dx, 

./L uy 
o 

2References given at end of paper. 
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is still valid. Substituting Eq. 27 into Eq. 6 gives, with 
Eq.7, 

n 

ql. = LL qn(8 - Yn) 

n = 1 
I 

f
e-altn[(X-xn)'+ (6-110)'] 

[(x - Xo)' + (8 _ Yo)'] dx, (29) 
o 

for the rate of migration across the line. A new symbol, 
q:, is introduced as follows. 

q: = q. if 8 > Yn 

q: = - q. if 8 < y. (30) 
Then have, 

N 

ql. = L L q: I 8 - Yo I 
n=l 

I 

f
e-altn[(X-Xo)'+ (6 - Yo)'] 

(x - X o)' + (8 _ Yo)' dx, 
(31) 

o 

and noting that 18 - y. I is the distance of the nth well 
from the line, always taken positive, define 

8n = 18 - Ynl ' (32) 
and then have 

N 116. 
_ 1):"""" *fe-l/an(~'+l) 

ql. - 2-rr L q n ~' + 1 d~ (33) 

n = 1 -XnI6. 
Thus, see that ql. is just the algebraic sum of the flows 
caused by each point sink, i.e., to calculate the rate of 
migration across the line consider each well as though 
it were the only well in the field and compute ql.q. 
Then, take these (ql./q)., N = 1, 2 ... N, and com
pute. 

(ql.). = (q: ). . q: ' (34) 

and then form the sum, 
N 

ql.=Lq;(q:). (35) 

n=l 

for the rate of migration across the line due to N wens. 
In a similar manner it can be shown that Ql. for N 

wens is given by 

(36) 

where 

{
Q*. = Q. y. < 8 
Q*. = - Q. y. > 8 (37) 

and (Ql./Q). is the value of Ql./Q which would re
sult if the nth well were the only wen in the field. 

VARIABLE RATES; SINGLE FIXED LINE 

The multiple wen solution, Eq. 27, for constant rates, 
q., n = 1, 2 ... N, can be used to construct the solu
tion for a single well whose production rate is varied 
in a step-wise manner. Suppose the production history 
of the wen to be 

lq = q,forO <t<t, 
q:: q. for t.<t<t'+1 ,n = 2, 3 ... N - 1 
q - qN for tN<t . . . . . . . . (38) 

Then all that is needed is to consider the single well 
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with variable rate given by Eq. 38 as N different wells 
with rates and production times given by 

{
No. 1: qI> t 
No. n: qn - q.-I> t - tn-1, n = 2, 3 ... N, (39) 

all located at the same point in the reservoir. Follow
ing this procedure the solution of the flow equation is 
obtained for a single well with rate history given by 
Eq. 38 as 

p(x,y,t) 

Pi 

(40) 

4k (t - t n-1) 

where 
r' = x' + y' , (41) 

i.e., the well is assumed at the origin. 
Thus, proceed as in the multiple well analysis to 

show that for the variable rate well, 
N 

q~ = L (q: )Sqn - qn-1) , (42) 

n = 1 

where now (q~/q)n is the value of q~/q for a single 
well with constant rate with f3 = 118 and the production 
time, t - tn-I> t> tN' 

For multiple wells, each with variable rate, each well 
is treated in the manner outlined here to yield a value 

84 

of (q~)! for the jth well, then define 

(q*~L = j (q~)!, if YI < 8 

(q*~); = I - (q~)! if YI > 8 (43) 
Finally, then, for multiple wells with variable rates, 

d = L(q*~)j' (44) 

1 

This procedure can be extended to determine Q~ for 
wells having variable rates as was done for multiple 
wells in the previous section of this Appendix. The re
sult is 

N 

Q~= L(~)}?n (45) 

n = 1 

where (Q~/Q)n is the value Q~/Q would have for a 
well with constant rate and production time, t - t.-1 • 

Here, Qn is given by 

Qn = (qn - qn-1) (t - (n-1) . (46)" 

It should be noted that any shut-in periods are also 
handled in this manner simply by making qn zero for 
the shut-in period. 
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