Automation is becoming an integral part of our daily lives as technology and techniques rapidly develop. Many automation workflows are now routinely being applied within the geoscience domain. The basic structure of automation and its success of modelling fundamentally hinges on the appropriate choice of parameters and speed of processing. The entire process demands that the data being fed into any machine learning model is essentially of good quality. The technological advances in well logging technology over decades have enabled the collection of vast amounts of data across wells and fields. This poses a major issue in automating petrophysical workflows. It necessitates to ensure that, the data being fed is appropriate and fit for purpose. The selection of features (logging curves) and parameters for machine learning algorithms has therefore become a topic at the forefront of related research. Inappropriate feature selections can lead erroneous results, reduced precision and have proved to be computationally expensive.
Experienced Eye (EE) is a novel methodology, derived from Domain Transfer Analysis (DTA), which seeks to identify and elicit the optimum input curves for modelling. During the EE solution process, relationships between the input variables and target variables are developed, based on characteristics and attributes of the inputs instead of statistical averages. The relationships so developed between variables can then be ranked appropriately and selected for modelling process.
This paper focuses on three distinct petrophysical data scenarios where inputs are ranked prior to modelling: prediction of continuous permeability from discrete core measurements, porosity from multiple logging measurements and finally the prediction of key geomechanical properties. Each input curve is ranked against a target feature. For each case study, the best ranked features were carried forward to the modelling stage, and the results are validated alongside conventional interpretation methods.
Ranked features were also compared between different machine learning algorithms: DTA, Neural Networks and Multiple Linear Regression. Results are compared with the available data for various case studies. The use of the new feature selection has been proven to improve accuracy and precision of prediction results from multiple modelling algorithms.