Abstract

Recently the drilling industry has seen many advances in the application of deep directional electromagnetic (EM) measurements for mapping deeper into the reservoir, with the latest one capable of seeing over 250 ft above and below the wellbore providing unprecedented understanding of the reservoir.

This measurement technology is now being used to look ahead of bit while drilling, for exploration wells to reduce drilling risks associated with unexpectedly penetrating certain formation. With the increasing complexity of the reservoirs that the industry is targeting, there is more and more quest for expanding the reservoir mapping capability, not just a 1D approach that can only map resistive boundaries on the vertical axis or near vertical axis and assume infinite extend in all other directions, but to enable geoscientists to better steer the well and better understand the reservoir structure and fluid contact in a full three-dimensional context around the wellbore.

In this communication, the authors introduce a new solution to this quest for full three-dimensional real-time reservoir mapping. The solution is composed of three parts: a set of new measurements acquired downhole and transmitted to surface in real-time, a new inversion algorithm that is model independent and therefore fit for any reservoir complexity, and a new computing paradigm that make it possible to provide answers in real-time while drilling. The new set of measurements almost doubles the number of well logs that were acquired before and greatly enriches formations evaluation around the wellbore. The new algorithm, different from all previous algorithms, is not confined to any specific forms of models, making it suitable for exploring and finding solutions in complex reservoir settings. Finally, taking advantage of the latest advances in the Cloud computing, turnaround time of the new inversion is improved by over hundred times, thanks to the scalability of the algorithm design and Cloud computing infrastructure.

Combining all these together allows to achieve three-dimensional reservoir map, without having to tradeoff between high resolution and depth of investigation. The 3D reservoir map that is generated from multiple transverse 2D inversion slices in real-time, enables timely update of reservoir model as drilling progress for the operator to make informed decisions.

This new technology is currently deployed in several locations around the world and in different environments. In this paper, the authors review deployment results, to illustrate the technology, from preparation to real-time execution, and finally to post-job model update.

With the ability of mapping in all directions while drilling, this technology opens the door to many applications and will enable the operators to target more complex reservoirs and achieving better geosteering results where 3D mapping and steering are required. In addition to its benefits for real-time operations, the technology also enables the geoscientists to update and calibrate their reservoir models with fine and accurate details, which can further benefit multiple disciplines including drilling, completion, production and reservoir management.

This content is only available via PDF.
You can access this article if you purchase or spend a download.