ABSTRACT
Wellbore instability has been experienced in areas of the Marcellus Shale and can become particularly troublesome in the superlaterals that are becoming more prevalent in that play. Often the instability while drilling these very long lateral wells is minimal; problems are more likely to occur while tripping out after reaching TD. The most common instability events when pulling out of the hole appear to be tight hole, pack-off and stuck pipe. These problems often worsen with time, indicating there is some time-dependence to the failure mechanism.
In order to develop effective mitigation strategies to combat the instability, it is imperative that the failure mechanism be correctly identified. Previous publications (Kowan and Ong, 2016; Addis et al. 2016; Riley et al. 2012) have suggested that bedding planes may play a role in some of the drilling problems experienced in the Marcellus Shale. In this paper, we will present a case study from the Marcellus that shows conclusive proof of weak bedding plane failure along a lateral well, where thousands of feet of anisotropic failure were captured with a LWD image log.
This image provided confirmation of the presence and failure of weak bedding planes in the Marcellus Shale. The image was also used to validate an existing geomechanical model for the area and gave the operator more confidence in the mitigation strategies developed from that geomechanical model, which had been based on the assumption that weak bedding was contributing to difficulty experienced on multiple lateral wells when tripping out of the hole.
This case study will begin with an overview of the geomechanical model, including the drilling history, stress/pore pressure model and rock properties. Next, some highlights from the image log, showing anisotropic bedding plane failure, will be featured as well as a comparison of the image to the geomechanical model. This case study will conclude with a review of proposed mitigation strategies that could be implemented by the operator to limit the risks posed by weak beds and minimize instability, when drilling laterals in this area, or similarly complex areas, of the Marcellus Shale.