Steam stimulation of the Cold Lake bitumen reservoir causes fracturing of the formation. Steam enters via convection along the fracture plane, and heat propagates perpendicular to this plane by conduction, which in some cases may be enhanced by convection. Temperature profiles from observation wells located around stimulated wells directly give the energy distribution at those locations. The analysis can be extended beyond energy distribution by distinguishing regions of convective and conductive heat transfer in the temperature profiles. Simple analytical models can then yield important insights into the cyclic steam stimulation process, such as fracture geometry and fluid flow velocity. Eight field cases are discussed representing profiles from the injection, shut-in, and production phases of the process.

You can access this article if you purchase or spend a download.