The objective of this paper is to enhance the produced oil quality during solvent-steam flooding processes by using asphaltenes precipitants and environmentally friendly solvents as injection fluid. This way, it is aimed to increase the asphaltene deposition tendency and decrease the emulsion formation severity.

Eight one-dimensional core flood experiments were conducted; one steam flooding, three solvent flooding, and four solvent-steam flooding. Five different solvents were tested; propane, n-hexane, toluene, Benzoyl peroxide (BP), and a plant-based environmentally friendly solvent (MS). Solvent and water injection, oil and water production, and temperature along the core flood were continuously measured during each experiment. Both produced oil and residual oil samples were further analyzed to investigate the quality of produced oil samples and the amount of asphaltenes deposited on spent rock. An ASTM method which uses n-pentane was implemented to separate asphaltenes from both produced and residual oil samples. The water content of produced and residual oil samples was determined through thermogravimetric analysis (TGA) and the water-in-oil emulsion content of produced oil samples was visualized with an optical microscope. To understand the impact of each SARA (Saturates, Aromatics, Resins, and Asphaltenes) fractions on produced oil quality during solvent-steam processes, every fraction was exposed to liquid or vapor water and examined under a microscope.

It has been observed that stability of asphaltenes and emulsions varies in the presence of vapor or liquid water. Aromatics and Resins fractions are the main contributors of water-in-oil emulsion formation, and emulsion formation is enhanced with the addition of asphaltenes. Vapor-water (steam) promotes the formation of more severe emulsions than liquid-water. Hence, the emulsion formation mechanism was predicted to start with a foam-formation step in where the vapor steam diffuses into the liquid crude before condensing to form liquid water droplets, and then, forming an emulsion at lower temperatures. Since asphaltenes insoluble solvents were used, diffusion of steam occurs mostly in deasphalted oil and mainly in aromatics and resins.

You can access this article if you purchase or spend a download.