The advances in hydraulic fracturing technology and horizontal well completions have led in recent years to rapid rise in exploitation and development of tight gas and shale plays all over the world, and particularly in North America. The popularity of new field technology has in fact raised many new questions. In particular, for forecasting the productivity and EUR of multifractured horizontal wells, it is not clear if conventional reservoir simulation concepts can be adapted for modeling or if extra physics must be included to obtain realistic solutions.

This paper presents various methods to model multifractured horizontal wells in tight gas sands using a conventional reservoir simulator coupled with geomechanics. Two actual wells in the same formation but with different fracturing techniques (i.e., Xlink gelled water fracs and un-gelled water (slick water) fracs) are studied. Detailed investigation of the role of fracture conductivity, effects of initial permeability level, net pay thickness, assumed size of the stimulated reservoir volume (SRV), and pressure or stress dependent permeability of the SRV and virgin reservoir were carried out by history matching the rate and cumulative production. It was established that i) history match is not possible without use of stress or pressure dependent permeability and ii) permeability dependence of pressure inside stimulated reservoir volume must be larger than in the rest of the reservoir. It was also observed that the standard method for using the same geomechanical data both in uncoupled reservoir and coupled geomechanical model will give incorrect results in terms of cumulative production.

A new method based on uniaxial deformation theory is proposed to more accurately approximate the geomechanical effects in conventional reservoir simulators without running a fully coupled geomechanical simulator. The results from uncoupled reservoir modeling using the new method for correcting the permeability data for poroelastic effects were remarkably similar to rigorously coupled geomechanical modeling.

This work will be of importance to engineers in analyzing and forecasting production performance of multifractured horizontal completions using numerical models. It will allow engineers to use uncoupled (conventional) reservoir modeling as a practical approximation of more complex coupled geomechanical models.

You can access this article if you purchase or spend a download.