Tight reservoirs stimulated by multistage hydraulic fracturing are commonly characterized by analyzing the hydrocarbon production data. However, analyzing the available hydrocarbon production data mainly determines the fracture-matrix interface. This analysis is not enough for a full characterization of the induced hydraulic fractures. Before putting the well on flowback, the induced fractures are occupied by the compressed fracturing fluid. Therefore, analyzing the produced fracturing fluid should in principle be able to characterize the induced fractures, and complement the production data analysis.

We develop a rate transient model for describing the fracturing fluid flowback. We also make various diagnostic plots for understanding the flowback behavior of three fractured horizontal wells. The diagnostic plots indicate three separate flowback regions. In the first region, water production dominates while in the third region hydrocarbon production dominates. In the second region, water production drops and hydrocarbon production ramps up. In general, we observe a linear relationship between rate normalized pressure (RNP) and material balance time (MBT) for the three regions. However, the proposed model can only describe the response of the first region. We successfully determine the hydraulic fracture permeability by history matching the early time flowback data. We conclude that the flowback analysis can complement the production data analysis for a comprehensive fracture characterization. The presented study encourages the industry to start careful measurement of the rate and pressure data immediately after putting the well on hydraulic fracture flowback.

You can access this article if you purchase or spend a download.