Traditional methods of determining wettability such as the Amott and the U.S. Bureau of Mines (USBM) test for an oil/brine/rock system are difficult to apply to shales due to their extremely low permeability, usually in the nanodarcy range. Earlier Nuclear Magnetic Resonance (NMR) studies on Berea sandstone showed consistency with standard wettablity measurements and served as a calibration standard. A total of 10 core plugs from an Ordovician organic rich shale were analyzed. The T2 NMR signature of the imbibed dodecane and brine occurred mostly at relaxation times faster than their measured bulk relaxation of 1 and 3 second, respectively, indicating that surface relaxation is dominant. The Ordovician organic rich shale display mixed wettability. Three of the samples had a high affinity for dodecane, as a result of the organic pores present in the samples. This result was consistent with the NMR spectra in both sequences as well as the gravimetric analysis. The main advantage NMR has over the traditional methods is that we are able to see where the fluids are being imbibed.

Mercury injection capillary pressure (MICP) characterizes the distribution of pore throats while NMR responds to the pore bodies. Assuming the throats and bodeies are equivalent, a scaling factor was used to match the NMR spectra and the MICP curves to estimate the effective surface relaxivity for the shale samples. The range of the effective surface relaxivities ranged between 0.5μm/sec to 3.1μm/sec with an average of 1.7 ± 1.0 μm/sec. Mineralogy variations were observed across the 10 shale samples but showed a correlation which suggests that the effective surface relaxivity is dependent on mineralogy.

You can access this article if you purchase or spend a download.