The amount of tight formations petrophysical work conducted at present in horizontal wells and the examples available in the literature are limited to only those wells that have complete data sets. This is very important. But the reality is that in the vast majority of horizontal wells the data required for detailed analyses are quite scarce.

To try to alleviate this problem, a new method is presented for complete petrophysical evaluation based on information that can be extracted from drill cuttings in the absence of well logs. The cuttings data include porosity and permeability. The gamma ray (GR) and any other logs, if available, can help support the interpretation. However, the methodology is built strictly on data extracted from cuttings and can be used for horizontal, slanted and vertical wells. The method is illustrated with the use of a tight gas formation in the Deep Basin of the Western Canada Sedimentary Basin (WCSB). However, it also has direct application in the case of liquids.

The method is shown to be a powerful petrophysical tool as it allows quantitative evaluation of water saturation, pore throat aperture, capillary pressure, flow units, porosity (or cementation) exponent m, true formation resistivity, distance to a water table (if present), and to distinguish the contributions from viscous and diffusion-like flow in tight gas formations. The method further allows the construction of Pickett plots without previous availability of well logs. The method assumes the existence of intervals at irreducible water saturation, which is the case of many tight formations currently under exploitation.

It is concluded that drill cuttings are a powerful direct source of information that allows complete and practical evaluation of tight reservoirs where well logs are scarce. The uniqueness and practicality of this quantitative procedure is that it starts from only laboratory analysis of drill cuttings, something that has not been done in the past.

You can access this article if you purchase or spend a download.