A basin centered gas accumulation (BCGA) is a "continuous petroleum accumulation" characterized by low permeability, the absence of downdip water, the absence of obvious traps and seals, the presence of pervasive gas or oil saturation over very large areas, abnormal pressures (either high or low), and the relative proximity to source rocks. The question is if it is reasonable to think that gas can be trapped over millions of years by an updip water block.

A reservoir simulation model has been created in order to answer this question. The water seal is shown to be the result of very low permeability and high capillary pressures, properties that are generally found in tight gas formations. The model is defined by a geometry that mimics the geologic interpretation of the Nikanassin BCGA in the Western Canada Sedimentary Basin (WCSB) and rock properties that provide a good representation of the real behavior of the reservoir in the Deep Basin. Different models were created trying to understand sensitivities to permeability and capillary pressure in the distribution of downdip gas and updip water over thousands of years. The results obtained appear consistent and reliable when compared with factual information from the Deep Basin.

The conclusion is reached that updip water blocks provide good seals in the Deep Basin. The simulation also confirms that special completion and stimulation practices are required in order to produce gas at economic rates from tight gas reservoirs.

You can access this article if you purchase or spend a download.