This paper presents a method to eliminate production loss due to liquid-loading in tight gas wells. Cyclic shut-in control is a simple production strategy that particularly benefits lower-permeability stimulated wells, including but not limited to shale gas wells.

Comparison is made between a gas well producing (1) in a "ideal" situation where 100% of liquids entering from the reservoir or condensing in the tubing are continuously removed (without shut-ins), (2) in a meta-stable liquid-loading condition with low gas rate, typical of most wells today, and (3) by the proposed strategy of cyclic shut-in control. We show that cyclic shutin control of stimulated low-permeability vertical wells to ultra-low-permeability horizontal multi-fraced wells can produce without ever experiencing liquid loading, and with little-to-no delay of ultimate recovery.

Cyclic shut-in control can be applied to all stimulated, lower-permeability gas wells, from the onset of gas rates that result in liquid-loading. The strategy can also be used for wells which already have experienced a period of liquid-loading, but the expected performance improvement may be less because of near-well formation damage caused by historic liquid-loading – e.g. fresh-water backflow and liquid-bank accumulation. In historically liquid-loading wells, an initial period of liquid removal and/or light stimulation may be needed prior to initiating cyclic shut-in control.

We show that the shut-in period should optimally be as short as operationally possible.

Cyclic shut-in control is shown to work equally well for layered no-crossflow systems with significant differential depletion at the onset of liquid loading.

Minimizing rate and recovery loss of liquid-loading gas wells is of international interest. We believe that cyclic shut-in control will become an industry standard practice for shale gas wells, and should lead to a significant ultimate increase in worldwide gas reserves. The method is extremely simple and requires only a rate-controlled wellhead shut-in device.

You can access this article if you purchase or spend a download.