This paper will present results from a modeling effort to derive best practices for the completion of hydraulically fractured horizontal Eagle Ford wells. The well, reservoir, completion/frac and production information used in this evaluation were provided by an operator from a five-county area in Texas.

Hydraulically fractured horizontal completions pose significant modeling and evaluation challenges. This is primarily due to two issues: 1) lack of well-specific data about the reservoir/rock properties, and 2) improper assumptions used in the modeling process. As shown in this paper, a data-driven approach to modeling these completions provides a much needed pragmatic perspective, identifies high-impact parameters and provides direction about how to improve the effectiveness of these complex completions.

Sensitivities performed on the predictive data model indicate that well-to-well variation in reservoir quality and geology has a dominant effect on Eagle Ford production. In addition, issues such as fracture spacing, frac volume, perforation distribution, proppant selection and wellbore length also affect well production and economics. A summary of completion and frac methodology for the Eagle Ford, in addition to a ranking of controllable (completion and frac design) and non-controllable (reservoir and geology) parameters that affect Eagle Ford production, will be included in this paper.

The information contained in this paper will be useful to those interested in reservoir, completion and frac parameters that affect production from shales analogous to the Eagle Ford. Reservoir quality, completion and frac methodology effects on production results will be quantified in this paper.

You can access this article if you purchase or spend a download.