Nanoparticles as part of nanotechnology have drawn the attention for its great potential of increasing oil recovery. From authors' previous studies (Li et al., 2013a), wettability alteration was proposed as one of the main Enhanced Oil Recovery (EOR) mechanisms for nanoparticles fluid, as adsorption of nanoparticles on pore walls leads to wettability alteration of reservoir. We conducted a series of wettability measurement experiments for aged intermediate-wet Berea sandstone, where the core plugs were treated by different concentration and type of nanoparticles fluid. Nanoparticles transport experiments also were performed for core plugs with injection of varying concentration and type of nanoparticles fluid. Pressure drop across the core plug during injection was recorded to evaluate nanoparticles adsorption and retention inside core, as well as desorption during brine postflush. Both hydrophilic silica nano-structure particles and hydrophilic silica colloidal nanoparticles were utilized in above two experiments.

The results of wettability alteration experiments indicated that hydrophilic nanoparticles have ability of making intermediate-wet Berea sandstone to be more water wet, and basically the higher concentration the more water wet will be. And different type of nanoparticles has different effect on the wettability alteration process. For nanoparticles transport experiments, the results showed that the nanoparticles undergo both adsorption and desorption as well as retention during injection. Pressure drop curves showed that absorption and retention of nano-structure particles inside core was significant while colloidal nanoparticles did not adsorb much. Permeability impairment was observed during nano-structure particles fluid injection, but on the contrary colloidal nanoparticles dispersion injection made core more permeable.

You can access this article if you purchase or spend a download.