The significance of unconventional gas reservoirs has been increasing for recent years owing to economic viability of their development, therefore assessment of the challenges and common pitfalls regarding those resources have been gaining importance at the same time. In this regard, the optimization of production performance of these reservoirs with the different well trajectories and completion techniques and identifying the best case scenario become more significant. That is absolutely challenging process due to the several reasons such as ultra-low permeability, desorption effect, and complex geological characteristics. However, it is possible to analyze the various parameters and observe their impact on each system with the help of advances in algorithms, computer power, and integrated software.

The objective of this work is to investigate and understand the effect of some reservoir and completion parameters on the future production performance of shale gas and coal bed methane (CBM) reservoirs. A practical model is constructed with the field and synthetic data for the analysis of gas production rate and cumulative gas production versus time in multi-layered shale gas and CBM reservoirs respectively. Changes in the thickness of various stratified layers, permeability, wellbore position, number of hydraulic fracture stage, and also production profile of each system are studied using different well trajectories. The results are obtained by running a series of reservoir simulation conducted by a commercial numerical simulator with dual porosity model for CBM and shale gas reservoirs.

You can access this article if you purchase or spend a download.