Integrated asset modeling has been used for the last decade with a wide technical application covering different challenges from field development to production optimization. Besides supporting the FEEDS and FEL studies for different purposes. Moreover, the technology has evolved in terms of integration and dynamic or transient simulation has been added as an extra element expanding the possibility to cover different challenges and workflows. The objective of this paper is to show how this dynamic integration (Dynamic integrated asset modeling) was applied to a common problem of several reservoirs that produce water and gas under different dynamic mechanisms (injection, aquifer and gas cap) to understand, from the reservoir perspective, the effects of gas and water conning over the entire production system.

The methodology applied was using a refined sector model solved with numerical simulation and coupled with a transient multiphase flow simulator to see how pressure drop affect the contacts level and shape based on the petrophysical properties and under different production scenarios and generate different graphics to see how this phenomenon behaves. Besides a comparison with all the most analytical correlations used in the literature to identify gas and water conning was performed to see the differences among them and with this dynamic integrated approach. On the other hand, for the production side this coupled model was applied to an offshore facility to see these reservoir effects in the transport system and how they impact in the pipeline and riser due to this abrupt entrance of gas and water changing the flow conditions, flow patterns, pressure drop and creating some instabilities in the separators caused by severe slugging.

The results of this analysis were very useful to understand the total production systems (reservoir-surface) behavior, predict the gas and water breakthrough, establish the critical rates to avoid these problems and see how the results differ in some cases with the common analytical correlations. Specific conditions in the pipeline and riser were established to quantify the slugging problems and evaluate different alternatives to eliminate the instabilities through proposing different scenarios such as gas injection in the riser, top side choking, etc. Application of this integrated approach has been very beneficial in recognizing the source of the problem, offer proper and feasible solutions in development and operational phases. In addition, validating and reducing uncertainty of related literature correlations and give to the production and reservoir engineers a quick and reliable way to know the critical rates that can support the decision-making process.

You can access this article if you purchase or spend a download.