Abstract

Manganese tetraoxide (Mn3O4) drilling fluid weighting material was first applied in two high-pressure/high-temperature (HP/HT) Madura Sea, Indonesia wells, BD-A and BD-B. Mn3O4 is less damaging to the environment and formation than other weighting agents. In the BD wells, coiled tubing (CT) will perform Mn3O4 mudcake removal by spotting an acid solution. The main challenges come from the formation characteristics: temperature up to 305°F, pressure of 8100 psi, 5,000 ppm H2S, and 5.5% CO2.

Slow-reacting acid was preferred to prevent creating a corrosive environment. The reaction of acetic acid, formic acid, and a chelating agent with Mn3O4 at 305°F was studied. A corrosion test was performed to see the effect of the acid and 5,000 ppm H2S on CT string and completion tubing metal. Viscosimeter and densitometer testing was done on 155 ppb Mn3O4 mud that was mixed at laboratory scale to represent actual drilling mud in the well. Filter cake was made using an HP/HT filter press and 10-micron alloxite disc to represent formation permeability.

Using the mix of acetic acid and chelating agent solution, 100% solubility of filter cake was achieved after 6 hours reaction time, giving enough time for CT to spot the acid in the entire 1,000-ft openhole interval and provide a uniform filter cake removal. With additional organic acid inhibitor and H2S inhibitor, the corrosion rate on CT and completion tubing metal after 16 hours test was found acceptable without pitting observed.

This method has been proven effective to remove Mn3O4 filter cake with significant pressure drawdown reduction, hence increasing well productivities. The utilization of CT improves cost efficiency by accurately placing a right amount of acid solution across the openhole section.

This stimulation fluid system is the first application in the world and was proven to be effective to remove Mn3O4 based filter cake and protect CT and tubing metal against H2S and CO2 in an HP/HT environment.

You can access this article if you purchase or spend a download.